Preoperative Metabolic Signatures of Prostate Cancer Recurrence Following Radical Prostatectomy

被引:34
作者
Clendinen, Chaevien S. [1 ]
Gaul, David A. [1 ]
Eugenia Monge, Maria [2 ]
Arnold, Rebecca S. [3 ]
Edison, Arthur S. [4 ]
Petros, John A. [3 ,5 ]
Fernandez, Facundo M. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[2] Consejo Nacl Invest Cient & Tecn, Ctr Invest Bionanociencias CIBION, Godoy Cruz 2390,C1425FQD, Buenos Aires, DF, Argentina
[3] Emory Univ, Dept Urol, Atlanta, GA 30308 USA
[4] Univ Georgia, Complex Carbohydrate Res Ctr, Dept Genet & Biochem & Mol Biol, Athens, GA 30602 USA
[5] Atlanta VA Med Ctr, Atlanta, GA 30033 USA
关键词
prostate cancer; biochemical recurrence; metabolomics; lipidomics; liquid chromatography mass spectrometry; nuclear magnetic resonance spectroscopy; PREDICT BIOCHEMICAL RECURRENCE; MASS-SPECTROMETRY; NMR-SPECTROSCOPY; BREAST-CANCER; MOUSE MODEL; TAURINE; SERUM; GLYCINE; SARCOSINE; INOSINE;
D O I
10.1021/acs.jproteome.8b00926
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Technological advances in mass spectrometry (MS), liquid chromatography (LC) separations, nuclear magnetic resonance (NMR) spectroscopy, and big data analytics have made possible studying metabolism at an "omics" or systems level. Here, we applied a multiplatform (NMR + LC-MS) metabolomics approach to the study of preoperative metabolic alterations associated with prostate cancer recurrence. Thus far, predicting which patients will recur even after radical prostatectomy has not been possible. Correlation analysis on metabolite abundances detected on serum samples collected prior to surgery from prostate cancer patients (n = 40 remission vs n = 40 recurrence) showed significant alterations in a number of pathways, including amino acid metabolism, purine and pyrimidine synthesis, tricarboxylic acid cycle, tryptophan catabolism, glucose, and lactate. Lipidomics experiments indicated higher lipid abundances on recurrent patients for a number of classes that included triglycerides, lysophosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, diglycerides, acyl carnitines, and ceramides. Machine learning approaches led to the selection of a 20-metabolite panel from a single preoperative blood sample that enabled prediction of recurrence with 92.6% accuracy, 94.4% sensitivity, and 91.9% specificity under cross-validation conditions.
引用
收藏
页码:1316 / 1327
页数:12
相关论文
共 74 条
[1]   Serum Lipid Profile and Risk of Prostate Cancer Recurrence: Results from the SEARCH Database [J].
Allott, Emma H. ;
Howard, Lauren E. ;
Cooperberg, Matthew R. ;
Kane, Christopher J. ;
Aronson, William J. ;
Terris, Martha K. ;
Amling, Christopher L. ;
Freedland, Stephen J. .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2014, 23 (11) :2349-2356
[2]   From Krebs to clinic: glutamine metabolism to cancer therapy [J].
Altman, Brian J. ;
Stine, Zachary E. ;
Dang, Chi V. .
NATURE REVIEWS CANCER, 2016, 16 (10) :619-634
[3]   Serine and glycine metabolism in cancer [J].
Amelio, Ivano ;
Cutruzzola, Francesca ;
Antonov, Alexey ;
Agostini, Massimiliano ;
Melino, Gerry .
TRENDS IN BIOCHEMICAL SCIENCES, 2014, 39 (04) :191-198
[4]  
American Urological Association, 2017, CLIN LOC PROST CANC
[5]   Bioinformatics analysis of the serine and glycine pathway in cancer cells [J].
Antonov, Alexey ;
Agostini, Massimiliano ;
Morello, Maria ;
Minieri, Marilena ;
Melino, Gerry ;
Amelio, Ivano .
ONCOTARGET, 2014, 5 (22) :11004-11013
[6]   Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development [J].
Baenke, Franziska ;
Peck, Barrie ;
Miess, Heike ;
Schulze, Almut .
DISEASE MODELS & MECHANISMS, 2013, 6 (06) :1353-1363
[7]   Nomograms in oncology: more than meets the eye [J].
Balachandran, Vinod P. ;
Gonen, Mithat ;
Smith, J. Joshua ;
DeMatteo, Ronald P. .
LANCET ONCOLOGY, 2015, 16 (04) :E173-E180
[8]   Impact of Age at Diagnosis on Prostate Cancer Treatment and Survival [J].
Bechis, Seth K. ;
Carroll, Peter R. ;
Cooperberg, Matthew R. .
JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (02) :235-241
[9]   Australian validation of the Cancer of the Prostate Risk Assessment Post-Surgical score to predict biochemical recurrence after radical prostatectomy [J].
Beckmann, Kerri ;
O'Callaghan, Michael ;
Vincent, Andrew ;
Roder, David ;
Millar, Jeremy ;
Evans, Sue ;
McNeil, John ;
Moretti, Kim .
ANZ JOURNAL OF SURGERY, 2018, 88 (03) :E183-E188
[10]   Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: Application in metabonomic toxicology studies [J].
Crockford, DJ ;
Holmes, E ;
Lindon, JC ;
Plumb, RS ;
Zirah, S ;
Bruce, SJ ;
Rainville, P ;
Stumpf, CL ;
Nicholson, JK .
ANALYTICAL CHEMISTRY, 2006, 78 (02) :363-371