Convolutional Neural Networks for Document Image Classification

被引:92
作者
Kang, Le [1 ]
Kumar, Jayant [1 ]
Ye, Peng [1 ]
Li, Yi [2 ,3 ]
Doermann, David [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] NICTA, Des Plaines, IL USA
[3] Australian Natl Univ, Canberra, ACT, Australia
来源
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2014年
基金
美国国家科学基金会;
关键词
D O I
10.1109/ICPR.2014.546
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a Convolutional Neural Network (CNN) for document image classification. In particular, document image classes are defined by the structural similarity. Previous approaches rely on hand-crafted features for capturing structural information. In contrast, we propose to learn features from raw image pixels using CNN. The use of CNN is motivated by the the hierarchical nature of document layout. Equipped with rectified linear units and trained with dropout, our CNN performs well even when document layouts present large inner-class variations. Experiments on public challenging datasets demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:3168 / 3172
页数:5
相关论文
共 26 条
[1]  
[Anonymous], 2011, DRR
[2]  
[Anonymous], P 2000 ACM S APPL CO
[3]  
[Anonymous], 2010, P PYTHON SCI COMPUTI
[4]  
[Anonymous], INT C DOC AN REC IEE
[5]  
[Anonymous], PATTERN RECOGNITION
[6]  
[Anonymous], P ICDAR
[7]  
[Anonymous], INT C IM PROC COMP V
[8]  
[Anonymous], INT C DOC AN REC
[9]  
[Anonymous], SPIE DOCUMENT RECOGN
[10]  
[Anonymous], COMP VIS 2003 P 9 IE