Infrared-Transparent Y2O3-MgO Nanocomposites Fabricated by the Glucose Sol-Gel Combustion and Hot-Pressing Technique

被引:46
作者
Xu, Shengquan [1 ,2 ]
Li, Jiang [1 ]
Li, Chaoyu [1 ,2 ]
Pan, Yubai [1 ]
Guo, Jingkun [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, Key Lab Transparent Optofunct Inorgan Mat, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
国家自然科学基金重大项目; 中国国家自然科学基金;
关键词
THERMAL-DECOMPOSITION; NANOCRYSTALLINE; PRECURSORS; ALUMINATE; POWDERS; SR;
D O I
10.1111/jace.13681
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A glucose sol-gel combustion method has been developed to synthesize composite nanopowders with equal volume fractions of Y2O3 and MgO. The synthesis involves the generation of precursor foam containing Y3+ and Mg2+ cations via the chemical and thermal degradation of glucose molecules in aqueous solutions. Subsequent calcination of the foam gave the composite nanopowders uniform composition and surface areas of 44-62m(2)/g depending on the relative amount of glucose. Then the nanopowder with an average particle size of 19nm was consolidated by the hot-pressing technique with different sintering temperatures. The fabricated nanocomposite is mid-infrared transparent as the result of fine grains, narrow grain size distribution, and uniform phase domains. The transmittance increases with increase in the sintering temperature and reaches 83.5% at 3-5m mid-infrared wave range once the temperature reaches 1350 degrees C, which is close to the theoretical value of 85%. And it is noteworthy that the cutoff wavelength reaches 9.6m, which is superior to those of spinel, AlON, and sapphire. And the Vickers hardness of the sample reaches 10.0 +/- 0.1GPa, which is significantly higher than those of the coarse grained single-phase MgO and Y2O3. The results indicate that the glucose sol-gel combustion and hot-pressing technique is an effective method to fabricate infrared transparent Y2O3-MgO nanocomposites.
引用
收藏
页码:2796 / 2802
页数:7
相关论文
共 34 条
[1]   A RAPID METHOD TO PREPARE CRYSTALLINE FINE PARTICLE CHROMITE POWDERS [J].
CHANDRAN, RG ;
PATIL, KC .
MATERIALS LETTERS, 1992, 12 (06) :437-441
[2]   A Foaming Esterification Sol-Gel Route for the Synthesis of Magnesia-Yttria Nanocomposites [J].
Chen, Chun-Hu ;
Garofano, Jacquelynn K. M. ;
Muoto, Chigozie K. ;
Mercado, Andrew L. ;
Suib, Steven L. ;
Aindow, Mark ;
Gell, Maurice ;
Jordan, Eric H. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (02) :367-371
[3]   THERMAL-DECOMPOSITION OF (SR, TI) ORGANIC PRECURSORS DURING THE PECHINI PROCESS [J].
CHO, SG ;
JOHNSON, PF ;
CONDRATE, RA .
JOURNAL OF MATERIALS SCIENCE, 1990, 25 (11) :4738-4744
[4]  
FURLONG LR, 1966, AM CERAM SOC BULL, V45, P1051
[5]   Nanostructured materials: Basic concepts and microstructure [J].
Gleiter, H .
ACTA MATERIALIA, 2000, 48 (01) :1-29
[6]   Properties of an Infrared-Transparent MgO:Y2O3 Nanocomposite [J].
Harris, Daniel C. ;
Cambrea, Lee R. ;
Johnson, Linda F. ;
Seaver, Robert T. ;
Baronowski, Meghan ;
Gentilman, Richard ;
Scott Nordahl, C. ;
Gattuso, Todd ;
Silberstein, Stephanie ;
Rogan, Patrick ;
Hartnett, Thomas ;
Zelinski, Brian ;
Sunne, Wayne ;
Fest, Eric ;
Poisl, W. Howard ;
Willingham, Charles B. ;
Turri, Giorgio ;
Warren, Cori ;
Bass, Michael ;
Zelmon, David E. ;
Goodrich, Steven M. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (12) :3828-3835
[7]   Durable 3-5 μm transmitting infrared window materials [J].
Harris, DC .
INFRARED PHYSICS & TECHNOLOGY, 1998, 39 (04) :185-201
[8]   THE SOL-GEL PROCESS [J].
HENCH, LL ;
WEST, JK .
CHEMICAL REVIEWS, 1990, 90 (01) :33-72
[9]  
Ikegami T, 2002, J AM CERAM SOC, V85, P1725, DOI 10.1111/j.1151-2916.2002.tb00342.x
[10]   A Sucrose-Mediated Sol-Gel Technique for the Synthesis of MgO-Y2O3 Nanocomposites [J].
Iyer, Aparna ;
Garofano, Jacquelynn K. M. ;
Reutenaur, Justin ;
Suib, Steven L. ;
Aindow, Mark ;
Gell, Maurice ;
Jordan, Eric H. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (02) :346-350