Chain-scattering solution to the H∞ control problem:: A Popov-Yakubovich based approach

被引:0
作者
Ionescu, V [1 ]
Stefan, R [1 ]
机构
[1] Univ Polytehnica Bucharest, Fac Automat Control & Comp, Bucharest 71272, Romania
来源
PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6 | 2001年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A chain-scattering based approach in terms of the generalized Riccati theory is employed to solve the disturbance attenuation problem. The technical machinery is instrumented via the Kalman-Popov-Yakubovich system.
引用
收藏
页码:4108 / 4113
页数:6
相关论文
共 50 条
[21]   Numerical Solution Method for Mixed H2/H∞ Robust Control Problem Based on Wavelets [J].
张成科 .
华东理工大学学报(自然科学版), 2004, (03) :332-335
[22]   Characterization of the solution to a constrained H∞ optimal control problem [J].
Mayne, DQ ;
Rakovic, SV ;
Vinter, RB ;
Kerrigan, EC .
AUTOMATICA, 2006, 42 (03) :371-382
[23]   Solution of the Problem of H∞-control in the Presence of Regular Nonlinearities [J].
V. A. Brusin ;
D. Yu. Samokhin .
Automation and Remote Control, 2003, 64 :1517-1526
[24]   Solution of the problem of H∞-control in the presence of regular nonlinearities [J].
Brusin, VA ;
Samokhin, DY .
AUTOMATION AND REMOTE CONTROL, 2003, 64 (10) :1517-1526
[25]   A behavioral approach to the H∞ optimal control problem [J].
Weiland, S ;
Stoorvogel, AA ;
de Jager, B .
SYSTEMS & CONTROL LETTERS, 1997, 32 (05) :323-334
[26]   The Markov chain approximation approach for numerical solution of stochastic control problems: experiences from Merton's problem [J].
Munk, C .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 136 (01) :47-77
[27]   Exact and flexible solution approach to a critical chain project management problem [J].
Hiroyuki Goto ;
Alan T. Murray .
Constraints, 2020, 25 :280-297
[28]   Exact and flexible solution approach to a critical chain project management problem [J].
Goto, Hiroyuki ;
Murray, Alan T. .
CONSTRAINTS, 2020, 25 (3-4) :280-297
[29]   Exact solution of scattering problem on a chain of atoms vibrating in the triple-well potential [J].
Kassan-Ogly, FA .
PHASE TRANSITIONS, 1999, 69 (04) :481-493
[30]   A GENERAL-APPROACH TO THE SOLUTION OF THE BOUNDED CONTROL SYNTHESIS PROBLEM IN A CONTROLLABILITY PROBLEM [J].
KOROBOV, VI .
MATHEMATICS OF THE USSR-SBORNIK, 1980, 37 (04) :535-557