Calculation of the generalized leaky aquifer integral

被引:5
作者
Alford, JA [1 ]
机构
[1] Univ Florida, Dept Phys, Quantum Theory Project, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.cpc.2005.06.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We provide a convenient method for the evaluation of the generalized leaky aquifer integral W-beta(x, y), for all real x, y>0 and integers and half odd integers beta>1/2. The key ingredient to obtaining values for higher beta is a new asymptotic expansion of the integral that is applicable for a wide range of these parameters, particularly large beta. An asymptotic value and a value, calculated via previously published methods, for the same x and y but small beta, form a well defined two-point boundary value problem that is easily solved. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 25 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
BIRKENHEUER U, 1994, THESIS TU MUNICH
[3]   SOME APPROXIMATIONS IN APPLICATIONS OF X-ALPHA THEORY [J].
DUNLAP, BI ;
CONNOLLY, JWD ;
SABIN, JR .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (08) :3396-3402
[4]  
Flamant I, 1998, INT J QUANTUM CHEM, V70, P1045, DOI 10.1002/(SICI)1097-461X(1998)70:4/5<1045::AID-QUA52>3.0.CO
[5]  
2-0
[6]   Efficient electronic structure calculations for systems of one-dimensional periodicity with the restricted Hartree-Fock-linear combination of atomic orbitals method implemented in Fourier space [J].
Flamant, I ;
Fripiat, JG ;
Delhalle, J ;
Harris, FE .
THEORETICAL CHEMISTRY ACCOUNTS, 2000, 104 (05) :350-357
[7]  
FLAMANT I, THESIS U NAMUR
[8]   EXPONENTIAL INTEGRAL INTEGRAL-1-INFINITY E-XTT-NDT FOR LARGE VALUES OF N-1 [J].
GAUTSCHI, W .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1959, 62 (03) :123-125
[9]  
GAUTSCHI W, 1961, J ACM, V8, P21, DOI 10.1145/321052.321054
[10]  
Hantush M.S., 1956, Eos Trans. AGU, V37, P702, DOI [10.1029/TR037i006p00702, DOI 10.1029/TR037I006P00702, 10.1029/tr037i006p00702]