An integrated deep learning model for the prediction of pathological complete response to neoadjuvant chemotherapy with serial ultrasonography in breast cancer patients: a multicentre, retrospective study

被引:24
作者
Wu, Lei [1 ,2 ,3 ]
Ye, Weitao [1 ,2 ]
Liu, Yu [2 ,4 ]
Chen, Dong [5 ]
Wang, Yuxiang [6 ]
Cui, Yanfen [6 ]
Li, Zhenhui
Li, Pinxiong [1 ,2 ]
Li, Zhen [8 ]
Liu, Zaiyi [1 ,2 ]
Liu, Min [9 ]
Liang, Changhong [1 ,2 ]
Yang, Xiaotang [6 ]
Xie, Yu [7 ]
Wang, Ying [10 ]
机构
[1] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Radiol, 106 Zhongshan 2nd Rd, Guangzhou 510080, Peoples R China
[2] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Prov Key Lab Artificial Intelligence Me, Guangzhou 510080, Peoples R China
[3] Guangdong Cardiovasc Inst, 106 Zhongshan 2nd Rd, Guangzhou 510080, Peoples R China
[4] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Ultrasound, 106 Zhongshan 2nd Rd, Guangzhou 510080, Peoples R China
[5] Kunming Med Univ, Yunnan Canc Hosp, Dept Med Ultrasound, Yunnan Canc Ctr,Affiliated Hosp 3, Kunming 650118, Yunnan, Peoples R China
[6] Shanxi Med Univ, Chinese Acad Med Sci, Canc Hosp, Shanxi Prov Canc Hosp,Shanxi Hosp, Taiyuan 030013, Peoples R China
[7] Kunming Med Univ, Affiliated Hosp 3, Yunnan Canc Ctr, Yunnan Canc Hosp,Dept Radiol, Kunming 650118, Yunnan, Peoples R China
[8] Kunming Med Univ, Yunnan Canc Hosp, Dept Breast Surg 3, Yunnan Canc Ctr,Affiliated Hosp 3, Kunming 650118, Yunnan, Peoples R China
[9] Sun Yat Sen Univ, Dept Ultrasound, Collaborat Innovat Ctr Canc Med, State Key Lab Oncol South China,Canc Ctr, Guangzhou 510060, Peoples R China
[10] Guangzhou Med Univ, Dept Med Ultrason, Affiliated Hosp 1, 151 Yanjiang West Rd, Guangzhou 510120, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 中国博士后科学基金;
关键词
Deep learning; Breast cancer; Neoadjuvant chemotherapy; Serial ultrasonography; HETEROGENEITY; ESTROGEN;
D O I
10.1186/s13058-022-01580-6
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The biological phenotype of tumours evolves during neoadjuvant chemotherapy (NAC). Accurate prediction of pathological complete response (pCR) to NAC in the early-stage or posttreatment can optimize treatment strategies or improve the breast-conserving rate. This study aimed to develop and validate an autosegmentation-based serial ultrasonography assessment system (SUAS) that incorporated serial ultrasonographic features throughout the NAC of breast cancer to predict pCR. Methods A total of 801 patients with biopsy-proven breast cancer were retrospectively enrolled from three institutions and were split into a training cohort (242 patients), an internal validation cohort (197 patients), and two external test cohorts (212 and 150 patients). Three imaging signatures were constructed from the serial ultrasonographic features before (pretreatment signature), during the first-second cycle of (early-stage treatment signature), and after (posttreatment signature) NAC based on autosegmentation by U-net. The SUAS was constructed by subsequently integrating the pre, early-stage, and posttreatment signatures, and the incremental performance was analysed. Results The SUAS yielded a favourable performance in predicting pCR, with areas under the receiver operating characteristic curve (AUCs) of 0.927 [95% confidence interval (CI) 0.891-0.963] and 0.914 (95% CI 0.853-0.976), compared with those of the clinicopathological prediction model [0.734 (95% CI 0.665-0.804) and 0.610 (95% CI 0.504-0.716)], and radiologist interpretation [0.632 (95% CI 0.570-0.693) and 0.724 (95% CI 0.644-0.804)] in the external test cohorts. Furthermore, similar results were also observed in the early-stage treatment of NAC [AUC 0.874 (0.793-0.955)-0.897 (0.851-0.943) in the external test cohorts]. Conclusions We demonstrate that autosegmentation-based SAUS integrating serial ultrasonographic features throughout NAC can predict pCR with favourable performance, which can facilitate individualized treatment strategies.
引用
收藏
页数:17
相关论文
共 50 条
[41]   Obesity is an independent prognostic factor of decreased pathological complete response to neoadjuvant chemotherapy in breast cancer patients [J].
Karatas, Fatih ;
Erdem, Gokmen Umut ;
Sahin, Suleyman ;
Aytekin, Aydin ;
Yuce, Deniz ;
Sever, Ali R. ;
Babacan, Taner ;
Ates, Ozturk ;
Ozisik, Yavuz ;
Altundag, Kadri .
BREAST, 2017, 32 :237-244
[42]   Factors Predicting Pathological Complete Response and Survival Outcomes in Breast Cancer Patients Receiving Neoadjuvant Chemotherapy [J].
Louis, Dhanya Mary ;
Mathew, Merin ;
Gutjahr, Georg ;
Mp, Narmada ;
Nair, Lakshmi Malavika ;
Bhaskaran, Renjitha ;
Kottarathil, Vijaykumar Dehannathparambil .
INDIAN JOURNAL OF SURGICAL ONCOLOGY, 2025,
[43]   Automated and reusable deep learning (AutoRDL) framework for predicting response to neoadjuvant chemotherapy and axillary lymph node metastasis in breast cancer using ultrasound images: a retrospective, multicentre study [J].
You, Jingjing ;
Huang, Yue ;
Ouyang, Lizhu ;
Zhang, Xiao ;
Chen, Pei ;
Wu, Xuewei ;
Shen, Hui ;
Zhang, Lu ;
Chen, Qiuying ;
Pei, Shufang ;
Zhang, Bin ;
Zhang, Shuixing .
ECLINICALMEDICINE, 2024, 69
[44]   Predictive factors of pathological response to neoadjuvant chemotherapy in patients with breast cancer [J].
Ryspayeva, Dinara ;
Lyashenko, Andrey ;
Dosenko, Irina ;
Kostryba, Oleksey ;
Koshyk, Olena ;
Krotevych, Mykhailo ;
Smolanka, Ivan .
JOURNAL OF BUON, 2020, 25 (01) :168-175
[45]   A deep learning approach for early prediction of breast cancer neoadjuvant chemotherapy response on multistage bimodal ultrasound images [J].
Xie, Jiang ;
Wei, Jinzhu ;
Shi, Huachan ;
Lin, Zhe ;
Lu, Jinsong ;
Zhang, Xueqing ;
Wan, Caifeng .
BMC MEDICAL IMAGING, 2025, 25 (01)
[46]   Diagnostic Performance of Deep Learning in Video-Based Ultrasonography for Breast Cancer: A Retrospective Multicentre Study [J].
Chen, Jing ;
Huang, Zhibin ;
Jiang, Yitao ;
Wu, Huaiyu ;
Tian, Hongtian ;
Cui, Chen ;
Shi, Siyuan ;
Tang, Shuzhen ;
Xu, Jinfeng ;
Xu, Dong ;
Dong, Fajin .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2024, 50 (05) :722-728
[47]   MRI and RNA-seq fusion for prediction of pathological response to neoadjuvant chemotherapy in breast cancer [J].
Li, Hui ;
Zhao, Yuanshen ;
Duan, Jingxian ;
Gu, Jia ;
Liu, Zaiyi ;
Zhang, Huailing ;
Zhang, Yuqin ;
Li, Zhi-Cheng .
DISPLAYS, 2024, 83
[48]   Prognostic significance of pathological complete response following neoadjuvant chemotherapy for operable breast cancer [J].
Kawajiri, Hidemi ;
Takashima, Tsutomu ;
Aomatsu, Naoki ;
Kashiwagi, Shinichiro ;
Noda, Satoru ;
Onoda, Naoyoshi ;
Ishikawa, Tetsurou ;
Hirakawa, Kosei .
ONCOLOGY LETTERS, 2014, 7 (03) :663-668
[49]   High Proliferation Predicts Pathological Complete Response to Neoadjuvant Chemotherapy in Early Breast Cancer [J].
Alba, Emilio ;
Lluch, Ana ;
Ribelles, Nuria ;
Anton-Torres, Antonio ;
Sanchez-Rovira, Pedro ;
Albanell, Joan ;
Calvo, Lourdes ;
Lopez Garcia-Asenjo, Jose Antonio ;
Palacios, Jose ;
Ignacio Chacon, Jose ;
Ruiz, Amparo ;
De la Haba-Rodriguez, Juan ;
Segui-Palmer, Miguel A. ;
Cirauqui, Beatriz ;
Margeli, Mireia ;
Plazaola, Arrate ;
Barnadas, Agusti ;
Casas, Maribel ;
Caballero, Rosalia ;
Carrasco, Eva ;
Rojo, Federico .
ONCOLOGIST, 2016, 21 (02) :150-155
[50]   Correlating transcriptional networks with pathological complete response following neoadjuvant chemotherapy for breast cancer [J].
Liu, Rong ;
Lv, Qiao-Li ;
Yu, Jing ;
Hu, Lei ;
Zhang, Li-Hua ;
Cheng, Yu ;
Zhou, Hong-Hao .
BREAST CANCER RESEARCH AND TREATMENT, 2015, 151 (03) :607-618