Illumination correction of dyed fabrics approach using Bagging-based ensemble particle swarm optimization-extreme learning machine

被引:12
|
作者
Zhou, Zhiyu [1 ]
Xu, Rui [1 ]
Wu, Dichong [2 ]
Zhu, Zefei [3 ]
Wang, Haiyan [4 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Informat Sci & Technol, 840 Xuelin St, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Univ Finance & Econ, Sch Business Adm, 18 Xueyuan St, Hangzhou 310018, Zhejiang, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Mech Engn, 188 Xuelin St, Hangzhou 310018, Zhejiang, Peoples R China
[4] Zhejiang Police Vocat Acad, Dept Secur & Prevent, 383 Tianmushang St, Hangzhou 310018, Zhejiang, Peoples R China
关键词
illumination correction; Bagging; extreme learning machine; particle swarm optimization; COLOR CONSTANCY; CHROMATICITY;
D O I
10.1117/1.OE.55.9.093102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Changes in illumination will result in serious color difference evaluation errors during the dyeing process. A Bagging-based ensemble extreme learning machine (ELM) mechanism hybridized with particle swarm optimization (PSO), namely Bagging-PSO-ELM, is proposed to develop an accurate illumination correction model for dyed fabrics. The model adopts PSO algorithm to optimize the input weights and hidden biases for the ELM neural network called PSO-ELM, which enhances the performance of ELM. Meanwhile, to further increase the prediction accuracy, a Bagging ensemble scheme is used to construct an independent PSO-ELM learning machine by taking bootstrap replicates of the training set. Then, the obtained multiple different PSO-ELM learners are aggregated to establish the prediction model. The proposed prediction model is evaluated with real dyed fabric images and discussed in comparison with several related methods. Experimental results show that the ensemble color constancy method is able to generate a more robust illuminant estimation model with better generalization performance. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition
    Ghimire, Deepak
    Lee, Joonwhoan
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2014, 10 (03): : 443 - 458
  • [12] Entropy query by bagging-based active learning approach in the extreme learning machine framework for hyperspectral image classification
    Pradhan, Monoj K.
    Minz, Sonajharia
    Shrivastava, Vimal K.
    CURRENT SCIENCE, 2020, 119 (06): : 934 - 943
  • [13] Prediction intervals for carbon dioxide emissions in China by extreme learning machine ensemble based on particle swarm optimization
    Yao, Tianqing
    Li, Linwei
    GLOBAL NEST JOURNAL, 2024, 26 (04):
  • [14] Extreme Learning Machine Based on Particle Swarm Optimization for Estimation of Reference Evapotranspiration
    Liu, Tianfeng
    Ding, Yongsheng
    Cai, Xin
    Zhu, Yifeng
    Zhang, Xiangfei
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 4567 - 4572
  • [15] Extreme Learning Machine and Particle Swarm Optimization for Inflation Forecasting
    Alfiyatin, Adyan Nur
    Rizki, Agung Mustika
    Mahmudy, Wayan Firdaus
    Ananda, Candra Fajri
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (04) : 473 - 478
  • [16] A hybrid Particle swarm optimization -Extreme Learning Machine approach for Intrusion Detection System
    Ali, Mohammed Hasan
    Fadlizolkipi, Mohamad
    Firdaus, Ahmad
    Khidzir, Nik Zulkarnaen
    2018 IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2018,
  • [17] Short-Term Wind Power Prediction Based On Particle Swarm Optimization-Extreme Learning Machine Model Combined With Adaboost Algorithm
    An, Guoqing
    Jiang, Ziyao
    Cao, Xin
    Liang, Yufei
    Zhao, Yuyang
    Li, Zheng
    Dong, Weichao
    Sun, Hexu
    IEEE ACCESS, 2021, 9 : 94040 - 94052
  • [18] A Parameter Adaptive Particle Swarm Optimization Algorithm for Extreme Learning Machine
    Li Bin
    Li Yibin
    Liu Meng
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 2448 - 2453
  • [19] Regularized Extreme Learning Machine Based on Remora Optimization Algorithm for Printed Matter Illumination Correction
    Li, Jianqiang
    Zhang, Xiaorong
    Yao, Yingdong
    Qi, Yubao
    Peng, Laihu
    IEEE ACCESS, 2024, 12 : 3718 - 3735
  • [20] Intrusion Detection for Wireless Sensor Network Using Particle Swarm Optimization Based Explainable Ensemble Machine Learning Approach
    Birahim, Shaikh Afnan
    Paul, Avijit
    Rahman, Fahmida
    Islam, Yamina
    Roy, Tonmoy
    Hasan, Mohammad Asif
    Haque, Fariha
    Chowdhury, Muhammad E. H.
    IEEE ACCESS, 2025, 13 : 13711 - 13730