Evolution of spectral properties along the O(6)-U(5) transition in the interacting boson model. II. Classical trajectories

被引:33
作者
Macek, M
Cejnar, P
Jolie, J
Heinze, S
机构
[1] Charles Univ Prague, Fac Math & Phys, CZ-18000 Prague, Czech Republic
[2] Univ Cologne, Inst Nucl Phys, D-50937 Cologne, Germany
来源
PHYSICAL REVIEW C | 2006年 / 73卷 / 01期
关键词
D O I
10.1103/PhysRevC.73.014307
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We continue our previous study of level dynamics in the [O(6)-U(5)] superset of O(5) transition of the interacting boson model [Phys. Rev. C 73, 014306 (2006)] by using the semiclassical theory of spectral fluctuations. We find classical monodromy, related to a singular bundle of orbits with infinite period at energy E=0, and bifurcations of numerous periodic orbits for E > 0. The spectrum of allowed ratios of periods associated with beta and gamma vibrations exhibits an abrupt change around zero energy. These findings explain anomalous bunching of quantum states in the E approximate to 0 region, which is responsible for the redistribution of levels between O(6) and U(5) multiplets.
引用
收藏
页数:11
相关论文
共 36 条
[1]   CHAOS IN THE LOW-LYING COLLECTIVE STATES OF EVEN-EVEN NUCLEI - CLASSICAL LIMIT [J].
ALHASSID, Y ;
WHELAN, N .
PHYSICAL REVIEW C, 1991, 43 (06) :2637-2647
[2]  
ALHASSID Y, 1994, PERSPECTIVES INTERAC, P591
[3]  
APRAHAMIAN A, 2006, IN PRESS P 12 INT C
[4]   DISTRIBUTION OF EIGENFREQUENCIES FOR WAVE-EQUATION IN A FINITE DOMAIN .3. EIGENFREQUENCY DENSITY OSCILLATIONS [J].
BALIAN, R ;
BLOCH, C .
ANNALS OF PHYSICS, 1972, 69 (01) :76-&
[5]   CLOSED ORBITS AND REGULAR BOUND SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1976, 349 (1656) :101-123
[6]   MANIFESTATIONS OF CLASSICAL PHASE-SPACE STRUCTURES IN QUANTUM-MECHANICS [J].
BOHIGAS, O ;
TOMSOVIC, S ;
ULLMO, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 223 (02) :43-133
[7]   Regular and chaotic vibrations of deformed nuclei with increasing γ rigidity -: art. no. 102502 [J].
Cejnar, P ;
Stránsky, P .
PHYSICAL REVIEW LETTERS, 2004, 93 (10) :102502-1
[8]   Quantum states of a sextic potential: hidden symmetry and quantum monodromy [J].
Child, MS ;
Dong, SH ;
Wang, XG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (32) :5653-5661
[9]   Quantum states in a champagne bottle [J].
Child, MS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02) :657-670
[10]  
Cushman R.H., 2015, Global Aspects of Classical Integrable Systems, V2nd ed.