High-dimensional and large-scale phenotyping of yeast mutants

被引:219
|
作者
Ohya, Y
Sese, J
Yukawa, M
Sano, F
Nakatani, Y
Saito, TL
Saka, A
Fukuda, T
Ishihara, S
Oka, S
Suzuki, G
Watanabe, M
Hirata, A
Ohtani, M
Sawai, H
Fraysse, N
Latgé, JP
François, JM
Aebi, M
Tanaka, S
Muramatsu, S
Araki, H
Sonoike, K
Nogami, S
Morishita, S
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Integrated Biosci, Kashiwa, Chiba 2778562, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol, Kashiwa, Chiba 2778562, Japan
[3] Japan Sci & Technol Corp, Inst Bioinformat & Res & Dev, Chiyoda Ku, Tokyo 1028666, Japan
[4] Univ Tokyo, Dept Comp Sci, Grad Sch Informat Sci & Technol, Bunkyo Ku, Tokyo 1130033, Japan
[5] Inst Pasteur, Unite Aspergillus, F-75015 Paris, France
[6] CNRS, Ctr Bioingn Gilbert Durand, UMR 5504, INRA, F-31077 Toulouse, France
[7] ETH, ETH Honggerberg, Inst Microbiol, CH-8093 Zurich, Switzerland
[8] Natl Inst Genet, Div Microbial Genet, Mishima, Shizuoka 4118540, Japan
关键词
cell morphology; functional genomics; high-dimensional phenotyping; phenome;
D O I
10.1073/pnas.0509436102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One of the most powerful techniques for attributing functions to genes in uni- and multicellular organisms is comprehensive analysis of mutant traits. In this study, systematic and quantitative analyses of mutant traits are achieved in the budding yeast Saccharomyces cerevisiae by investigating morphological phenotypes. Analysis of fluorescent microscopic images of triple-stained cells makes it possible to treat morphological variations as quantitative traits. Deletion of nearly half of the yeast genes not essential for growth affects these morphological traits. Similar morphological phenotypes are caused by deletions of functionally related genes, enabling a functional assignment of a locus to a specific cellular pathway. The high-dimensional phenotypic analysis of defined yeast mutant strains provides another step toward attributing gene function to all of the genes in the yeast genome.
引用
收藏
页码:19015 / 19020
页数:6
相关论文
共 50 条
  • [21] High-Dimensional Bayesian Optimisation with Large-Scale Constraints - An Application to Aeroelastic Tailoring
    Maathuis, Hauke
    De Breuker, Roeland
    Castro, Saullo G. P.
    AIAA SCITECH 2024 FORUM, 2024,
  • [22] Spectral clustering based on iterative optimization for large-scale and high-dimensional data
    Zhao, Yang
    Yuan, Yuan
    Nie, Feiping
    Wang, Qi
    NEUROCOMPUTING, 2018, 318 : 227 - 235
  • [23] Supervised Papers Classification on Large-Scale High-Dimensional Data with Apache Spark
    Akritidis, Leonidas
    Bozanis, Panayiotis
    Fevgas, Athanasios
    2018 16TH IEEE INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP, 16TH IEEE INT CONF ON PERVAS INTELLIGENCE AND COMP, 4TH IEEE INT CONF ON BIG DATA INTELLIGENCE AND COMP, 3RD IEEE CYBER SCI AND TECHNOL CONGRESS (DASC/PICOM/DATACOM/CYBERSCITECH), 2018, : 987 - 994
  • [24] MODEL REDUCTION FOR LARGE-SCALE SYSTEMS WITH HIGH-DIMENSIONAL PARAMETRIC INPUT SPACE
    Bui-Thanh, T.
    Willcox, K.
    Ghattas, O.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (06): : 3270 - 3288
  • [25] Large-scale mouse phenotyping
    Denise Waldron
    Nature Reviews Genetics, 2015, 16 (9) : 499 - 499
  • [26] Communication-efficient distributed estimation for high-dimensional large-scale linear regression
    Liu, Zhan
    Zhao, Xiaoluo
    Pan, Yingli
    METRIKA, 2023, 86 (04) : 455 - 485
  • [27] Data Quality Measures and Efficient Evaluation Algorithms for Large-Scale High-Dimensional Data
    Cho, Hyeongmin
    Lee, Sangkyun
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 17
  • [28] Visualizing large-scale high-dimensional data via hierarchical embedding of KNN graphs
    Zhu, Haiyang
    Zhu, Minfeng
    Feng, Yingchaojie
    Cai, Deng
    Hu, Yuanzhe
    Wu, Shilong
    Wu, Xiangyang
    Chen, Wei
    VISUAL INFORMATICS, 2021, 5 (02) : 51 - 59
  • [29] Efficient distributed optimization for large-scale high-dimensional sparse penalized Huber regression
    Pan, Yingli
    Xu, Kaidong
    Wei, Sha
    Wang, Xiaojuan
    Liu, Zhan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (07) : 3106 - 3125
  • [30] Comments on: Statistical inference and large-scale multiple testing for high-dimensional regression models
    Ye Tian
    Yang Feng
    TEST, 2023, 32 : 1172 - 1176