On account of its sensitivity to chirality, Raman optical activity (ROA), which may be measured as a small difference in the intensity of vibrational Raman scattering from chiral molecules in right- and left-circularly polarized incident light, or as the intensity of a small circularly polarized component in the scattered light, is a powerful probe of the structure of biomolecules. Protein ROA spectra provide information on secondary and tertiary structures of polypeptide backbones, backbone hydration and side-chain conformations, and on structural elements present in unfolded states. Carbohydrate ROA spectra provide information on the central features of carbohydrate stereochemistry, especially that of the glycosidic link. Glycoprotein ROA spectra provide information on both the polypeptide and carbohydrate components. This article describes the ROA technique and presents and discusses the ROA spectra of a selection of proteins, carbohydrates, and a glycoprotein. The many structure-sensitive bands in protein ROA spectra are favorable for applying pattern recognition techniques, illustrated here using nonlinear mapping, to determine structural relationships between different proteins. (c) 2005 Wiley-Liss, Inc.