Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe's canonical slit regions

被引:26
|
作者
Nasser, Mohamed M. S. [1 ,2 ]
机构
[1] King Khalid Univ, Fac Sci, Dept Math, Abha, Saudi Arabia
[2] Ibb Univ, Dept Math, Fac Sci, Ibb, Yemen
关键词
Numerical conformal mapping; Multiply connected regions; Generalized Neumann kernel; INTEGRAL-EQUATION; DOMAINS; MAP;
D O I
10.1016/j.jmaa.2012.09.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a boundary integral method for approximating the conformal mapping from bounded multiply connected regions onto the fifth category of Koebe's classical canonical slit regions. The method is based on a uniquely solvable boundary integral equation with generalized Neumann kernel. The results of some test calculations illustrate the performance of the presented method. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:729 / 743
页数:15
相关论文
共 50 条
  • [21] CONFORMAL MAPPING OF MULTIPLY CONNECTED DOMAINS ONTO MANY-SHEETED CANONICAL SURFACES
    ALENICYN, YE
    TRANSACTIONS OF THE ACADEMY OF SCIENCES USSR-MATHEMATICAL SERIES, 1964, 29 (03): : 135 - &
  • [22] Conformal mappings of bounded multiply connected regions onto circular and parallel slits regions and their inverses using a GUI
    Sangawi, Ali W. K.
    Murid, Ali H. M.
    Lee, Khiy Wei
    SCIENCEASIA, 2017, 43 : 79 - 89
  • [23] A FAST BOUNDARY INTEGRAL EQUATION METHOD FOR CONFORMAL MAPPING OF MULTIPLY CONNECTED REGIONS
    Nasser, Mohamed M. S.
    Al-Shihri, Fayzah A. A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03): : A1736 - A1760
  • [24] Numerical conformal mapping methods for simply and doubly connected regions
    Delillo, TK
    Pfaltzgraff, JA
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (01): : 155 - 171
  • [26] A NUMERICAL-METHOD FOR CONFORMAL MAPPING OF DOUBLY CONNECTED REGIONS
    FORNBERG, B
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (04): : 771 - 783
  • [27] Radial Slit Maps of Bounded Multiply Connected Regions
    Ali W. K. Sangawi
    Ali H. M. Murid
    M. M. S. Nasser
    Journal of Scientific Computing, 2013, 55 : 309 - 326
  • [28] Radial Slit Maps of Bounded Multiply Connected Regions
    Sangawi, Ali W. K.
    Murid, Ali H. M.
    Nasser, M. M. S.
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (02) : 309 - 326
  • [29] Numerical Conformal Mappings onto the Canonical Slit Domains
    Amano, Kaname
    Okano, Dai
    THEORETICAL AND APPLIED MECHANICS JAPAN, 2012, 60 : 317 - 332
  • [30] THE APPROXIMATE CONFORMAL MAPPING ONTO MULTIPLY CONNECTED DOMAINS
    Abzalilov, D. F.
    Shirokova, E. A.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2019, 8 (01): : 3 - 16