Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe's canonical slit regions

被引:26
|
作者
Nasser, Mohamed M. S. [1 ,2 ]
机构
[1] King Khalid Univ, Fac Sci, Dept Math, Abha, Saudi Arabia
[2] Ibb Univ, Dept Math, Fac Sci, Ibb, Yemen
关键词
Numerical conformal mapping; Multiply connected regions; Generalized Neumann kernel; INTEGRAL-EQUATION; DOMAINS; MAP;
D O I
10.1016/j.jmaa.2012.09.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a boundary integral method for approximating the conformal mapping from bounded multiply connected regions onto the fifth category of Koebe's classical canonical slit regions. The method is based on a uniquely solvable boundary integral equation with generalized Neumann kernel. The results of some test calculations illustrate the performance of the presented method. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:729 / 743
页数:15
相关论文
共 50 条
  • [1] Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebe's canonical slit domains
    Nasser, Mohamed M. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) : 47 - 56
  • [2] Conformal Mapping of Unbounded Multiply Connected Regions onto Canonical Slit Regions
    Yunus, Arif A. M.
    Murid, Ali H. M.
    Nasser, Mohamed M. S.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [3] Numerical Conformal Mapping of Unbounded Multiply Connected Regions onto Circular Slit Regions
    Yunus, A. A. M.
    Murid, A. H. M.
    Nasser, M. M. S.
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2012, 8 (01): : 38 - 43
  • [4] Fast Computing of Conformal Mapping and Its Inverse of Bounded Multiply Connected Regions onto Second, Third and Fourth Categories of Koebe’s Canonical Slit Regions
    Ali W. K. Sangawi
    Ali H. M. Murid
    Lee Khiy Wei
    Journal of Scientific Computing, 2016, 68 : 1124 - 1141
  • [5] Erratum to: Fast Computing of Conformal Mapping and Its Inverse of Bounded Multiply Connected Regions onto Second, Third and Fourth Categories of Koebe’s Canonical Slit Regions
    Ali W. K. Sangawi
    Ali H. M. Murid
    Lee Khiy Wei
    Journal of Scientific Computing, 2016, 68 : 1142 - 1143
  • [6] Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and straight slit regions
    Yunus, A. A. M.
    Murid, A. H. M.
    Nasser, M. M. S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2162):
  • [7] Fast Computing of Conformal Mapping and Its Inverse of Bounded Multiply Connected Regions onto Second, Third and Fourth Categories of Koebe's Canonical Slit Regions (vol 68, pg 1124, 2016)
    Sangawi, Ali W. K.
    Murid, Ali H. M.
    Wei, Lee Khiy
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (03) : 1142 - 1143
  • [8] Conformal Mapping of Unbounded Multiply Connected Regions onto Logarithmic Spiral Slit with Infinite Straight Slit
    Yunus, Arif A. M.
    Murid, Ali H. M.
    4TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES (ICMS4): MATHEMATICAL SCIENCES: CHAMPIONING THE WAY IN A PROBLEM BASED AND DATA DRIVEN SOCIETY, 2017, 1830
  • [9] Fast conformal mapping of multiply connected regions
    Wegmann, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 130 (1-2) : 119 - 138
  • [10] Numerical conformal mapping of multiply connected domains to regions with circular boundaries
    Luo, Wei
    Dai, Junfei
    Gu, Xianfeng
    Yau, Shing-Tung
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (11) : 2940 - 2947