Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe's canonical slit regions

被引:26
作者
Nasser, Mohamed M. S. [1 ,2 ]
机构
[1] King Khalid Univ, Fac Sci, Dept Math, Abha, Saudi Arabia
[2] Ibb Univ, Dept Math, Fac Sci, Ibb, Yemen
关键词
Numerical conformal mapping; Multiply connected regions; Generalized Neumann kernel; INTEGRAL-EQUATION; DOMAINS; MAP;
D O I
10.1016/j.jmaa.2012.09.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a boundary integral method for approximating the conformal mapping from bounded multiply connected regions onto the fifth category of Koebe's classical canonical slit regions. The method is based on a uniquely solvable boundary integral equation with generalized Neumann kernel. The results of some test calculations illustrate the performance of the presented method. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:729 / 743
页数:15
相关论文
共 34 条
  • [1] A charge simulation method for numerical conformal mapping onto circular and radial slit domains
    Amano, K
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (04) : 1169 - 1187
  • [2] Amano K, 2003, B MALAYS MATH SCI SO, V26, P35
  • [3] [Anonymous], 1975, Potential theory in modern function theory
  • [4] Atkinson KE., 1996, Cambridge Monographs on Applied and Computational Mathematics
  • [5] Beckenbach E.F., 1952, NBS APPL MATH SERIES, V18
  • [6] Bergman S., 1970, The Kernel Function and Conformal Mapping (Mathematical Surveys Number V)
  • [7] Bourchtein L., COMPLEX VAR IN PRESS
  • [8] Courant R., 1950, Dirichlets Principle, Conformal Mapping, and Minimal Surfaces
  • [9] Crowdy D., 2006, Comput. Methods Funct. Theory, V6, P59
  • [10] Radial and circular slit maps of unbounded multiply connected circle domains
    Delillo, T. K.
    Driscoll, T. A.
    Elcrat, A. R.
    Pfaltzgraff, J. A.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2095): : 1719 - 1737