Analysis of Single-Cell RNA-seq Data by Clustering Approaches

被引:22
|
作者
Zhu, Xiaoshu [1 ,2 ,3 ]
Li, Hong-Dong [1 ]
Guo, Lilu [2 ,3 ]
Wu, Fang-Xiang [4 ,5 ]
Wang, Jianxin [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Yulin Normal Univ, Sch Comp Sci & Engn, Yulin 537000, Guangxi, Peoples R China
[3] Yulin Normal Univ, Guangxi Univ Key Lab Complex Syst Optimizat & Big, Yulin 537000, Guangxi, Peoples R China
[4] Univ Saskatchewan, Div Biomed Engn, Saskatoon, SK S7N 5A9, Canada
[5] Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK S7N 5A9, Canada
基金
中国国家自然科学基金;
关键词
Single-cell sequencing technology; single-cell RNA-seq data; similarity measurement; clustering of cell types; cluster method; feature selection; TRANSCRIPTOMICS REVEALS; FATE DECISIONS; EXPRESSION; GENOME; CLASSIFICATION; DISCOVERY; IDENTIFICATION; HETEROGENEITY; POPULATIONS; DIVERSITY;
D O I
10.2174/1574893614666181120095038
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The recently developed single-cell RNA sequencing (scRNA-seq) has attracted a great amount of attention due to its capability to interrogate expression of individual cells, which is superior to traditional bulk cell sequencing that can only measure mean gene expression of a population of cells. scRNA-seq has been successfully applied in finding new cell subtypes. New computational challenges exist in the analysis of scRNA-seq data. Objective: We provide an overview of the features of different similarity calculation and clustering methods, in order to facilitate users to select methods that are suitable for their scRNA-seq. We would also like to show that feature selection methods are important to improve clustering performance. Results: We first described similarity measurement methods, followed by reviewing some new clustering methods, as well as their algorithmic details. This analysis revealed several new questions, including how to automatically estimate the number of clustering categories, how to discover novel subpopulation, and how to search for new marker genes by using feature selection methods. Conclusion: Without prior knowledge about the number of cell types, clustering or semisupervised learning methods are important tools for exploratory analysis of scRNA-seq data.
引用
收藏
页码:314 / 322
页数:9
相关论文
共 50 条
  • [1] A Global Similarity Learning for Clustering of Single-Cell RNA-Seq Data
    Zhu, Xiaoshu
    Guo, Lilu
    Xu, Yunpei
    Li, Hong-Dong
    Liao, Xingyu
    Wu, Fang-Xiang
    Peng, Xiaoqing
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 261 - 266
  • [2] Comparison of Gene Selection Methods for Clustering Single-cell RNA-seq Data
    Zhu, Xiaoshu
    Wang, Jianxin
    Li, Rongruan
    Peng, Xiaoqing
    CURRENT BIOINFORMATICS, 2023, 18 (01) : 1 - 11
  • [3] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [4] A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data
    Zhu, Xiaoshu
    Li, Hong-Dong
    Xu, Yunpei
    Guo, Lilu
    Wu, Fang-Xiang
    Duan, Guihua
    Wang, Jianxin
    GENES, 2019, 10 (02)
  • [5] Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data
    Menon, Vilas
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (04) : 240 - 245
  • [6] Impact of similarity metrics on single-cell RNA-seq data clustering
    Kim, Taiyun
    Chen, Irene Rui
    Lin, Yingxin
    Wang, Andy Yi-Yang
    Yang, Jean Yee Hwa
    Yang, Pengyi
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (06) : 2316 - 2326
  • [7] Differential Expression Analysis of Single-Cell RNA-Seq Data: Current Statistical Approaches and Outstanding Challenges
    Das, Samarendra
    Rai, Anil
    Rai, Shesh N.
    ENTROPY, 2022, 24 (07)
  • [8] scDFC: A deep fusion clustering method for single-cell RNA-seq data
    Hu, Dayu
    Liang, Ke
    Zhou, Sihang
    Tu, Wenxuan
    Liu, Meng
    Liu, Xinwang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [9] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [10] Improving Single-Cell RNA-seq Clustering by Integrating Pathways
    Zhang, Chenxing
    Gao, Lin
    Wang, Bingbo
    Gao, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)