Carbon coated flower like Bi2S3 grown on nickel foam as binder-free electrodes for electrochemical hydrogen and Li-ion storage capacities

被引:48
作者
Jin, Rencheng [1 ]
Li, Guihua [1 ]
Zhang, Zhengjiang [1 ]
Yang, Li-Xia [1 ]
Chen, Gang [2 ]
机构
[1] Ludong Univ, Sch Chem & Mat Sci, Yantai 264025, Peoples R China
[2] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China
关键词
Bismuth sulfide; electrochemical hydrogen storage; lithium-ion batteries; binder free; porous structure; HIGH-PERFORMANCE ANODE; FACILE SYNTHESIS; CONTROLLABLE SYNTHESIS; COUNTER ELECTRODE; LITHIUM; NANOPARTICLES; MICROSPHERES; FABRICATION; COMPOSITES; MECHANISM;
D O I
10.1016/j.electacta.2015.05.021
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon coated flower like Bi2S3 on nickel foam are simply fabricated by a solvothermal synthesis method accompanying with glucose as a precursor of subsequent carbonization. The architectures are directly used as electrodes for electrochemical hydrogen and Li-ion storage. Such architectures display high electrochemical hydrogen storage and the discharging capacity of 165 mAh g (1) is obtained. When used as anode material, the binder free Bi2S3@C/Ni electrode delivers superior cycling stability and rate capability. Discharge capacity reaches as high as 698 mAh g(-1) after 50 cycles at a current density of 100 mA g (1). Even at 1000 mA g (1), the capacity still remains at 510 mAh g (1) after 40 cycles. The superior performance can be ascribed to the unique electrode. The porous electrode gives more reaction sites and accommodates volume change during cycling; while the carbon shell improves electronic conductivity and suppresses particle aggregation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:458 / 464
页数:7
相关论文
共 34 条
[1]   Transport properties,of Bi2S3 and the ternary bismuth sulfides KBi6.33S10 and K2Bi8S13 [J].
Chen, BX ;
Uher, C ;
Iordanidis, L ;
Kanatzidis, MG .
CHEMISTRY OF MATERIALS, 1997, 9 (07) :1655-1658
[2]   Preparation and electrochemical hydrogen storage of boron nitride nanotubes [J].
Chen, X ;
Gao, XP ;
Zhang, H ;
Zhou, Z ;
Hu, WK ;
Pang, GL ;
Zhu, HY ;
Yan, TY ;
Song, DY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (23) :11525-11529
[3]   Controllable Synthesis of Hierarchical Nanostructured Hollow Core/Mesopore Shell Carbon for Electrochemical Hydrogen Storage [J].
Fang, Baizeng ;
Kim, Minsik ;
Kim, Jung Ho ;
Yu, Jong-Sung .
LANGMUIR, 2008, 24 (20) :12068-12072
[4]   Graphene-Wrapped CoS Nanoparticles for High-Capacity Lithium-Ion Storage [J].
Gu, Yan ;
Xu, Yi ;
Wang, Yong .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (03) :801-806
[5]   SnS-Quantum Dot Solar Cells Using Novel TiC Counter Electrode and Organic Redox Couples [J].
Guo, Wei ;
Shen, Yihua ;
Wu, Mingxing ;
Wang, Liang ;
Wang, Linlin ;
Ma, Tingli .
CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (25) :7862-7868
[6]   A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries [J].
He, Min ;
Yuan, Lixia ;
Hu, Xianluo ;
Zhang, Wuxing ;
Shu, Jie ;
Huang, Yunhui .
NANOSCALE, 2013, 5 (08) :3298-3305
[7]   MoS2 Nanoplates Consisting of Disordered Graphene-like Layers for High Rate Lithium Battery Anode Materials [J].
Hwang, Haesuk ;
Kim, Hyejung ;
Cho, Jaephil .
NANO LETTERS, 2011, 11 (11) :4826-4830
[8]   A Facile Route to Flowerlike Bi2S3 Constructed by Polycrystalline Nanoplates with Enhanced Electrochemical Properties [J].
Jin, Rencheng ;
Li, Guihua ;
Liu, Junshen ;
Yang, Lixia .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2013, 2013 (31) :5400-5407
[9]   Hierarchical chlorophytum-like Bi2S3 architectures with high electrochemical performance [J].
Jin, Rencheng ;
Xu, Yanbin ;
Li, Guihua ;
Liu, Junshen ;
Chen, Gang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (22) :9137-9144
[10]   Bismuth sulfide and its carbon nanocomposite for rechargeable lithium-ion batteries [J].
Jung, Heechul ;
Park, Cheol-Min ;
Sohn, Hun-Joon .
ELECTROCHIMICA ACTA, 2011, 56 (05) :2135-2139