The lattice of quasivarietes of modules over a Dedekind ring

被引:0
作者
Jedlicka, Premysl [1 ]
Matczak, Katarzyna [2 ]
Mucka, Anna [3 ]
机构
[1] Czech Univ Life Sci, Dept Math, Fac Engn, Prague 16521, Czech Republic
[2] Warsaw Univ Technol, Fac Civil Engn Mech & Petrochem Plock, PL-09400 Plock, Poland
[3] Warsaw Univ Technol, Fac Math & Informat Sci, PL-00661 Warsaw, Poland
来源
ALGEBRA AND DISCRETE MATHEMATICS | 2019年 / 27卷 / 01期
关键词
quasivarieties; lattices; modules; Dedekind rings;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1995 D. V. Belkin described the lattice of quasivarieties of modules over principal ideal domains [1]. The following paper provides a description of the lattice of subquasivarieties of the variety of modules over a given Dedekind ring. It also shows which subvarieties of these modules are deductive (a variety is deductive if every subquasivariety is a variety).
引用
收藏
页码:37 / 49
页数:13
相关论文
共 14 条
  • [1] [Anonymous], 2002, Modes
  • [2] Belkin D. V., 1995, THESIS
  • [3] Subquasivarieties of regularized varieties
    Bergman, C
    Romanowska, A
    [J]. ALGEBRA UNIVERSALIS, 1996, 36 (04) : 536 - 563
  • [4] Gorbunov VA., 1998, Algebraic Theory of Quasivarieties
  • [5] DEDUCTIVE VARIETIES OF MODULES AND UNIVERSAL-ALGEBRAS
    HOGBEN, L
    BERGMAN, C
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 289 (01) : 303 - 320
  • [6] Malcev AI., 1973, Algebraic Systems, DOI DOI 10.1515/9783112611227
  • [7] Quasivarieties of cancellative commutative binary modes
    Matczak K.
    Romanowska A.B.
    [J]. Studia Logica, 2004, 78 (1-2) : 321 - 335
  • [8] Irregular quasivarieties of commutative binary modes
    Matczak, K
    Romanowska, AB
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2005, 15 (04) : 699 - 715
  • [9] McKenzie R. N., 1987, ALGEBRA LATTICES VAR, VI
  • [10] Narkiewicz W., 2004, ELEMENTARY ANAL THEO