Internalisation of polymeric nanosensors in mesenchymal stem cells: Analysis by flow cytometry and confocal microscopy

被引:5
作者
Coupland, Paul G. [1 ]
Fisher, Karen A. [1 ]
Jones, D. Rhodri E. [2 ]
Aylott, Jonathan W. [1 ]
机构
[1] Univ Nottingham, Sch Pharm, Lab Biophys & Surface Anal, Nottingham NG7 2RD, England
[2] Univ Nottingham Hosp, Dept Immunol, Nottingham NG7 2UH, England
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
nanosensors; tat peptide; mesenchymal stem cells; flow cytometry; confacal microscopy;
D O I
10.1016/j.jconrel.2008.06.018
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The aim of this study was to demonstrate that flow cytometry and confocal microscopy could be applied in a complementary manner to analyse the internalisation of polymeric nanosensors in mesenchymal stem cells (MSC). The two techniques are able to provide en masse data analysis of nanosensors from large cell populations and detailed images of intracellular nanosensor localisation, respectively. The polyacrylamide nanosensors used in this investigation had been modified to contain free amine groups which were subsequently conjugated to Tat peptide, which acted as a delivery vector for nanosensor internalisation. Flow cytometry was used to confirm the health of MSC culture and assess the impact of nanosensor internalisation. MSC were characterised using fluorescently tagged CD cell surface markers that were also used to show that nanosensor internalisation did not negatively impact on MSC culture. Additionally it was shown that flow cytometry can be used to measure fluorophores located both on the cell surface and internalised within the cell. Complementary data was obtained using confocal microscopy to confirm nanosensor internalisation within MSC. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 34 条
[1]   Adult bone marrow-derived cells for cardiac repair - A systematic review and meta-analysis [J].
Abdel-Latif, Ahmed ;
Bolli, Roberto ;
Tleyjeh, Imad M. ;
Montori, Victor M. ;
Perin, Emerson C. ;
Hornung, Carlton A. ;
Zuba-Surma, Ewa K. ;
Al-Mallah, Mouaz ;
Dawn, Buddhadeb .
ARCHIVES OF INTERNAL MEDICINE, 2007, 167 (10) :989-997
[2]   Optical nanosensors - an enabling technology for intracellular measurements [J].
Aylott, JW .
ANALYST, 2003, 128 (04) :309-312
[3]   Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy [J].
Baksh, D ;
Song, L ;
Tuan, RS .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2004, 8 (03) :301-316
[4]   Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells [J].
Buck, SM ;
Xu, H ;
Brasuel, M ;
Philbert, MA ;
Kopelman, R .
TALANTA, 2004, 63 (01) :41-59
[5]   Potential application for mesenchymal stem cells in the treatment of cardiovascular diseases [J].
Bunnell, BA ;
Deng, WW ;
Robinson, CM ;
Waldron, PR ;
Bivalacqua, TJ ;
Baber, SR ;
Hyman, AL ;
Kadowitz, PJ .
CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 2005, 83 (07) :529-539
[6]   Mesenchymal stem cells in immunoregulation [J].
Chen, Xi ;
Armstrong, Marilyn Ann ;
Li, Gang .
IMMUNOLOGY AND CELL BIOLOGY, 2006, 84 (05) :413-421
[7]   In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract [J].
Choi, KS ;
Shin, JS ;
Lee, JJ ;
Kim, YS ;
Kim, SB ;
Kim, CW .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 330 (04) :1299-1305
[8]   Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors [J].
Clark, HA ;
Kopelman, R ;
Tjalkens, R ;
Philbert, MA .
ANALYTICAL CHEMISTRY, 1999, 71 (21) :4837-4843
[9]   DEVELOPMENT OF FIBROBLAST COLONIES IN MONOLAYER CULTURES OF GUINEA-PIG BONE MARROW AND SPLEEN CELLS [J].
FRIEDENSTEIN, AJ ;
CHAILAKHJAN, RK ;
LALYKINA, KS .
CELL AND TISSUE KINETICS, 1970, 3 (04) :393-+
[10]   Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow [J].
Gronthos, S ;
Zannettino, ACW ;
Hay, SJ ;
Shi, ST ;
Graves, SE ;
Kortesidis, A ;
Simmons, PJ .
JOURNAL OF CELL SCIENCE, 2003, 116 (09) :1827-1835