A Note On The Boundedness Of Solutions Of Generalized Functional Differential Equations

被引:0
作者
Valdes, Juan Eduardo Napoles [1 ]
Jose, Sayooj Aby [2 ,3 ]
机构
[1] UNNE FACENA, Dept Math, RA-3400 Corrientes, Argentina
[2] Alagappa Univ, Ramanujan Ctr Higher Math, Karaikkudi 630004, India
[3] Alagappa Univ, Dept Math, Karaikkudi 630004, India
来源
APPLIED MATHEMATICS E-NOTES | 2022年 / 22卷
关键词
STABILITY; DEFINITION; BEHAVIOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work presents some asymptotic properties of the solutions, mainly related to the boundedness, of certain functional differential equations in the framework of the generalized local derivative.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
[31]   Ultimate Boundedness in the Sense of Poisson of Solutions to Systems of Differential Equations and Lyapunov Functions [J].
Lapin, K. S. .
MATHEMATICAL NOTES, 2018, 103 (1-2) :221-231
[32]   On the boundedness of nonoscillatory solutions of certain fractional differential equations with positive and negative terms [J].
Grace, Said R. ;
Graef, John R. ;
Tunc, Ercan .
APPLIED MATHEMATICS LETTERS, 2019, 97 :114-120
[33]   STABILITY AND BOUNDEDNESS PROPERTIES OF SOLUTIONS TO CERTAIN FIFTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS [J].
Ogundare, B. S. .
MATEMATICKI VESNIK, 2009, 61 (04) :257-268
[34]   Stability and boundedness of solutions of a kind of third-order delay differential equations [J].
Afuwape, A. U. ;
Omeike, M. O. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2010, 29 (03) :329-342
[35]   A note on a discretization scheme for Volterra integro-differential equations that preserves stability and boundedness [J].
Mickens, Ronald E. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2007, 13 (06) :547-550
[36]   THE RAZUMIKHIN TYPE THEOREMS OF STABILITY AND BOUNDEDNESS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY [J].
陈强 ;
陈海明 .
AnnalsofDifferentialEquations, 1997, (01) :19-22
[37]   Periodic solutions for a class of neutral functional differential equations with infinite delay [J].
Liu, Guirong ;
Yan, Weiping ;
Yan, Jurang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :604-613
[38]   Stability of functional differential equations with variable impulsive perturbations via generalized ordinary differential equations [J].
Afonso, S. M. ;
Bonotto, E. M. ;
Federson, M. ;
Gimenes, L. P. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (02) :189-214
[39]   A note on the mild solutions of Hilfer impulsive fractional differential equations [J].
Sousa, J. Vanterler da C. ;
Oliveira, D. S. ;
de Oliveira, E. Capelas .
CHAOS SOLITONS & FRACTALS, 2021, 147
[40]   Some remarks on the stability and boundedness of solutions of certain differential equations of fourth-order [J].
Tunc, Cemil .
COMPUTATIONAL & APPLIED MATHEMATICS, 2007, 26 (01) :1-17