Predictive modelling of ferroelectric tunnel junctions

被引:104
作者
Velev, Julian P. [1 ,2 ]
Burton, John D. [1 ,3 ]
Zhuravlev, Mikhail Ye [4 ,5 ]
Tsymbal, Evgeny Y. [1 ,3 ]
机构
[1] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[2] Univ Puerto Rico, Dept Phys & Astron, San Juan, PR 00936 USA
[3] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
[4] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Moscow, Russia
[5] St Petersburg State Univ, Fac Liberal Arts & Sci, St Petersburg, Russia
基金
美国国家科学基金会;
关键词
ELECTRICAL-RESISTANCE; ELECTRORESISTANCE; POLARIZATION; CONDUCTANCE; PHYSICS; ENHANCEMENT; ELECTRONICS; INTERFACES; NANOSCALE; STATES;
D O I
10.1038/npjcompumats.2016.9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction-a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.
引用
收藏
页数:13
相关论文
共 101 条
[1]   First-principles study of metal-induced gap states in metal/oxide interfaces and their relation with the complex band structure [J].
Aguado-Puente, Pablo ;
Junquera, Javier .
MRS COMMUNICATIONS, 2013, 3 (04) :191-197
[2]   Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures [J].
Ahn, CH ;
Rabe, KM ;
Triscone, JM .
SCIENCE, 2004, 303 (5657) :488-491
[3]   Effect of interface bonding on spin-dependent tunneling from the oxidized Co surface [J].
Belashchenko, KD ;
Tsymbal, EY ;
van Schilfgaarde, M ;
Stewart, DA ;
Oleynik, II ;
Jaswal, SS .
PHYSICAL REVIEW B, 2004, 69 (17) :174408-1
[4]   Ultrathin oxide films and interfaces for electronics and spintronics [J].
Bibes, Manuel ;
Villegas, Javier E. ;
Barthelemy, Agnes .
ADVANCES IN PHYSICS, 2011, 60 (01) :5-84
[5]   Electroresistance Effect in Ferroelectric Tunnel Junctions with Symmetric Electrodes [J].
Bilc, Daniel I. ;
Novaes, Frederico D. ;
Iniguez, Jorge ;
Ordejon, Pablo ;
Ghosez, Philippe .
ACS NANO, 2012, 6 (02) :1473-1478
[6]   Spin-dependent transport in a multiferroic tunnel junction: Theory for Co/PbTiO3/Co [J].
Borisov, Vladislav S. ;
Ostanin, Sergey ;
Achilles, Steven ;
Henk, Juergen ;
Mertig, Ingrid .
PHYSICAL REVIEW B, 2015, 92 (07)
[7]   Engineering ferroelectric tunnel junctions through potential profile shaping [J].
Boyn, S. ;
Garcia, V. ;
Fusil, S. ;
Carretero, C. ;
Garcia, K. ;
Xavier, S. ;
Collin, S. ;
Deranlot, C. ;
Bibes, M. ;
Barthelemy, A. .
APL MATERIALS, 2015, 3 (06)
[8]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[9]   TUNNELING CONDUCTANCE OF ASYMMETRICAL BARRIERS [J].
BRINKMAN, WF ;
DYNES, RC ;
ROWELL, JM .
JOURNAL OF APPLIED PHYSICS, 1970, 41 (05) :1915-&
[10]   Magnetoelectric interfaces and spin transport [J].
Burton, J. D. ;
Tsymbal, E. Y. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1977) :4840-4855