Deep Non-Cooperative Spectrum Sensing Over Rayleigh Fading Channel

被引:15
作者
Su, Zhengyang [1 ]
Teh, Kah Chan [1 ]
Razul, Sirajudeen Gulam [2 ]
Kot, Alex Chichung [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Temasek Labs, Singapore 637553, Singapore
关键词
Sensors; Feature extraction; Signal to noise ratio; Convolution; Training; Convolutional neural networks; OFDM; Deep learning; spectrum sensing; signal detection; autoencoder; COGNITIVE RADIO;
D O I
10.1109/TVT.2021.3138593
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a robust non-cooperative spectrum sensing algorithm based on deep learning over Rayleigh fading channel. We conduct noise cancellation on the received sensing data using the stacked convolutional auto-encoder (SCAE) as a pre-processing step. The series of the denoised signal in the time domain is then fed into the proposed Hybrid CNN-SA-GRU (H-CSG) network. The proposed network combines convolutional neural network (CNN), self-attention (SA) modules and gate recurrent unit (GRU). It can extract input features from spatial and temporal domains. The proposed algorithm has been shown to be effective and robust in detecting weak signals at the low signal-to-noise ratio (SNR) level.
引用
收藏
页码:4460 / 4464
页数:5
相关论文
共 19 条
  • [1] Atapattu S, 2014, SPRINGERBRIEF COMPUT, P11, DOI 10.1007/978-1-4939-0494-5_2
  • [2] Sensing OFDM Signal: A Deep Learning Approach
    Cheng, Qingqing
    Shi, Zhenguo
    Nguyen, Diep N.
    Dutkiewicz, Eryk
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (11) : 7785 - 7798
  • [3] Deep Learning for Spectrum Sensing
    Gao, Jiabao
    Yi, Xuemei
    Zhong, Caijun
    Chen, Xiaoming
    Zhang, Zhaoyang
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (06) : 1727 - 1730
  • [4] Multiple-Antenna-Based Blind Spectrum Sensing in the Presence of Impulsive Noise
    Hassan, Kais
    Gautier, Roland
    Dayoub, Iyad
    Berbineau, Marion
    Radoi, Emanuel
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2014, 63 (05) : 2248 - 2257
  • [5] He KM, 2015, PROC CVPR IEEE, P5353, DOI 10.1109/CVPR.2015.7299173
  • [6] Deep Cooperative Sensing: Cooperative Spectrum Sensing Based on Convolutional Neural Networks
    Lee, Woongsup
    Kim, Minhoe
    Cho, Dong-Ho
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (03) : 3005 - 3009
  • [7] Sensing-throughput tradeoff for cognitive radio networks
    Liang, Ying-Chang
    Zeng, Yonghong
    Peh, Edward C. Y.
    Hoang, Anh Tuan
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2008, 7 (04) : 1326 - 1337
  • [8] Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction
    Masci, Jonathan
    Meier, Ueli
    Ciresan, Dan
    Schmidhuber, Juergen
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 52 - 59
  • [9] Cognitive radio: Making software radios more personal
    Mitola, J
    Maguire, GQ
    [J]. IEEE PERSONAL COMMUNICATIONS, 1999, 6 (04): : 13 - 18
  • [10] Accelerating Recurrent Neural Networks in Analytics Servers: Comparison of FPGA, CPU, GPU, and ASIC
    Nurvitadhi, Eriko
    Sim, Jaewoong
    Sheffield, David
    Mishra, Asit
    Krishnan, Srivatsan
    Marr, Debbie
    [J]. 2016 26TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2016,