On the Weak and Ergodic Limit of the Spectral Shift Function

被引:3
作者
Borovyk, Vita [1 ]
Makarov, Konstantin A. [2 ]
机构
[1] Univ Cincinnati, Dept Math, Cincinnati, OH 45221 USA
[2] Univ Missouri, Dept Math, Columbia, MO 63211 USA
关键词
spectral shift function; scattering phase; Jost function; Schrodinger operators; SCATTERING OPERATORS; WAVE;
D O I
10.1007/s11005-011-0524-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate convergence properties of the spectral shift functions associated with a pair of Schrodinger operators with Dirichlet boundary conditions at the end points of a finite interval as the length of interval approaches infinity.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 17 条
[1]  
Bailey P B., 1993, Results Math, V23, P3, DOI [DOI 10.1007/BF03323127, 10.1007/BF03323127]
[2]  
Birman M. S., 1992, ST PETERSB MATH J, V4, P1
[3]   Spectral shift function, amazing and multifaceted [J].
Birman, MS ;
Pushnitski, AB .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1998, 30 (02) :191-199
[4]  
BIRMAN MS, 1962, DOKL AKAD NAUK SSSR+, V144, P475
[5]  
BRUNING E, 1983, J MATH PHYS, V24, P1516, DOI 10.1063/1.525890
[6]  
BUSLAEV VS, 1960, DOKL AKAD NAUK SSSR, V132, P13
[7]  
Calogero F., 1967, Variable Phase Approach to Potential Scattering
[8]  
Chadan K, 2012, Inverse problems in quantum scattering theory
[9]   CONCAVITY PROPERTIES OF KREINS SPECTRAL SHIFT FUNCTION [J].
GEISLER, R ;
KOSTRYKIN, V ;
SCHRADER, R .
REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (02) :161-181
[10]  
Hislop P.D., ARXIV10072670V2