Predicting neoadjuvant chemotherapy benefit using deep learning from stromal histology in breast cancer

被引:18
作者
Li, Fengling [1 ,2 ]
Yang, Yongquan [2 ]
Wei, Yani [1 ,2 ]
Zhao, Yuanyuan [3 ]
Fu, Jing [4 ]
Xiao, Xiuli [5 ]
Zheng, Zhongxi [2 ]
Bu, Hong [1 ,2 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Pathol, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp, Inst Clin Pathol, Chengdu, Peoples R China
[3] Shanxi Med Univ, Chinese Acad Med Sci, Canc Hosp, Shanxi Prov Canc Hosp,Shanxi Hosp,Dept Pathol, Taiyuan, Peoples R China
[4] Sichuan Prov Peoples Hosp, Dept Pathol, Chengdu, Peoples R China
[5] Southwest Med Univ, Affiliated Hosp, Dept Pathol, Luzhou, Peoples R China
关键词
TUMOR; RATIO; CARCINOMA; BIOPSIES; THERAPY;
D O I
10.1038/s41523-022-00491-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Neoadjuvant chemotherapy (NAC) is a standard treatment option for locally advanced breast cancer. However, not all patients benefit from NAC; some even obtain worse outcomes after therapy. Hence, predictors of treatment benefit are crucial for guiding clinical decision-making. Here, we investigated the predictive potential of breast cancer stromal histology via a deep learning (DL)-based approach and proposed the tumor-associated stroma score (TS-score) for predicting pathological complete response (pCR) to NAC with a multicenter dataset. The TS-score was demonstrated to be an independent predictor of pCR, and it not only outperformed the baseline variables and stromal tumor-infiltrating lymphocytes (sTILs) but also significantly improved the prediction performance of the baseline variable-based model. Furthermore, we discovered that unlike lymphocytes, collagen and fibroblasts in the stroma were likely associated with a poor response to NAC. The TS-score has the potential to better stratify breast cancer patients in NAC settings.
引用
收藏
页数:11
相关论文
共 49 条
[1]   Artificial intelligence as the next step towards precision pathology [J].
Acs, B. ;
Rantalainen, M. ;
Hartman, J. .
JOURNAL OF INTERNAL MEDICINE, 2020, 288 (01) :62-81
[2]   The prognostic significance of tumor-associated stroma in invasive breast carcinoma [J].
Ahn, Soomin ;
Cho, Junhun ;
Sung, Jiyoun ;
Lee, Jeong Eon ;
Nam, Seok Jin ;
Kim, Kyoung-Mee ;
Cho, Eun Yoon .
TUMOR BIOLOGY, 2012, 33 (05) :1573-1580
[3]   Comparing computer-generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays [J].
Akbar, Shazia ;
Jordan, Lee B. ;
Purdie, Colin A. ;
Thompson, Alastair M. ;
McKenna, Stephen J. .
BRITISH JOURNAL OF CANCER, 2015, 113 (07) :1075-1080
[4]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[5]   Learning from Imbalanced Data Sets with Weighted Cross-Entropy Function [J].
Aurelio, Yuri Sousa ;
de Almeida, Gustavo Matheus ;
de Castro, Cristiano Leite ;
Braga, Antonio Padua .
NEURAL PROCESSING LETTERS, 2019, 50 (02) :1937-1949
[6]   Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival [J].
Beck, Andrew H. ;
Sangoi, Ankur R. ;
Leung, Samuel ;
Marinelli, Robert J. ;
Nielsen, Torsten O. ;
van de Vijver, Marc J. ;
West, Robert B. ;
van de Rijn, Matt ;
Koller, Daphne .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
[7]   Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies [J].
Bejnordi, Babak Ehteshami ;
Mullooly, Maeve ;
Pfeiffer, Ruth M. ;
Fan, Shaoqi ;
Vacek, Pamela M. ;
Weaver, Donald L. ;
Herschorn, Sally ;
Brinton, Louise A. ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Beck, Andrew H. ;
Gierach, Gretchen L. ;
van der Laak, Jeroen A. W. M. ;
Sherman, Mark E. .
MODERN PATHOLOGY, 2018, 31 (10) :1502-1512
[8]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[9]   Computationally Derived Image Signature of Stromal Morphology Is Prognostic of Prostate Cancer Recurrence Following Prostatectomy in African American Patients [J].
Bhargava, Hersh K. ;
Leo, Patrick ;
Elliott, Robin ;
Janowczyk, Andrew ;
Whitney, Jon ;
Gupta, Sanjay ;
Fu, Pingfu ;
Yamoah, Kosj ;
Khani, Francesca ;
Robinson, Brian D. ;
Rebbeck, Timothy R. ;
Feldman, Michael ;
Lal, Priti ;
Madabhushi, Anant .
CLINICAL CANCER RESEARCH, 2020, 26 (08) :1915-1923
[10]   Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study [J].
Bulten, Wouter ;
Pinckaers, Hans ;
van Boven, Hester ;
Vink, Robert ;
de Bel, Thomas ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Hulsbergen-van de Kaa, Christina ;
Litjens, Geert .
LANCET ONCOLOGY, 2020, 21 (02) :233-241