Symmetries of the discrete Burgers equation

被引:30
作者
Heredero, RH [1 ]
Levi, D
Winternitz, P
机构
[1] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] Univ Rome, Dipartimento Fis Eduardo Amaldi, I-00146 Rome, Italy
[3] Ist Nazl Fis Nucl, I-00146 Rome, Italy
[4] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 14期
关键词
D O I
10.1088/0305-4470/32/14/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A discrete Cole-Hopf transformation is used to derive a discrete Burgers equation that is linearizable to a discrete heat equation. A five-dimensional symmetry algebra is obtained that reduces to the Lie point symmetry algebra of the usual Burgers equation, in the continuous limit. This Lie algebra is used to obtain explicit invariant solutions.
引用
收藏
页码:2685 / 2695
页数:11
相关论文
共 22 条
[1]  
Burgers J M, 1974, NONLINEAR DIFFUSION, DOI DOI 10.1007/978-94-010-1745-9
[2]  
Dorodnitsyn VA, 1991, J Soviet Math, V55, P1490, DOI [10.1007/BF01097535, DOI 10.1007/BF01097535]
[3]   LIE SYMMETRIES OF FINITE-DIFFERENCE EQUATIONS [J].
FLOREANINI, R ;
VINET, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (12) :7024-7042
[4]  
HEREDERO RH, 1998, LIE SYMMETRIES ORDIN
[5]   NON-LINEAR PARTIAL DIFFERENCE EQUATIONS .5. NON-LINEAR EQUATIONS REDUCIBLE TO LINEAR EQUATIONS [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1979, 46 (01) :312-319
[6]   Lie symmetries and their local determinacy for a class of differential-difference equations [J].
Jiang, ZH .
PHYSICS LETTERS A, 1998, 240 (03) :137-143
[7]   THE EXISTENCE OF LIE SYMMETRIES FOR FIRST-ORDER ANALYTIC DISCRETE DYNAMICAL-SYSTEMS [J].
JOSHI, N ;
VASSILIOU, PJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 195 (03) :872-887
[8]  
LAFORTUNE S, 1998, 2566 CRM
[9]   Lie group formalism for difference equations [J].
Levi, D ;
Vinet, L ;
Winternitz, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (02) :633-649
[10]   Conditions for the existence of higher symmetries of evolutionary equations on the lattice [J].
Levi, D ;
Yamilov, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) :6648-6674