Optical Oxygen Micro- and Nanosensors for Plant Applications

被引:50
作者
Ast, Cindy [1 ,2 ]
Schmaelzlin, Elmar [1 ]
Loehmannsroeben, Hans-Gerd [3 ]
van Dongen, Joost T. [2 ]
机构
[1] Fraunhofer Inst Appl Polymer Res, D-14476 Potsdam, Germany
[2] Max Planck Inst Mol Plant Physiol, Energy Metab Res Grp, D-14476 Potsdam, Germany
[3] Univ Potsdam, Dept Phys Chem, Inst Chem, D-14476 Potsdam, Germany
关键词
oxygen sensor; biosensors; microsensors; nanosensors; endogenous sensor proteins; dual-frequency phase-modulation; phosphorescence quenching; plant science; CELL-PENETRATING PEPTIDES; INTRACELLULAR DELIVERY; PHOSPHORESCENT PROBES; FLUORESCENT PROTEINS; GAS-EXCHANGE; INTERNALIZATION; GRADIENTS; BINDING; PERMEABILITY; MECHANISM;
D O I
10.3390/s120607015
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Pioneered by Clark's microelectrode more than half a century ago, there has been substantial interest in developing new, miniaturized optical methods to detect molecular oxygen inside cells. While extensively used for animal tissue measurements, applications of intracellular optical oxygen biosensors are still scarce in plant science. A critical aspect is the strong autofluorescence of the green plant tissue that interferes with optical signals of commonly used oxygen probes. A recently developed dual-frequency phase modulation technique can overcome this limitation, offering new perspectives for plant research. This review gives an overview on the latest optical sensing techniques and methods based on phosphorescence quenching in diverse tissues and discusses the potential pitfalls for applications in plants. The most promising oxygen sensitive probes are reviewed plus different oxygen sensing structures ranging from micro-optodes to soluble nanoparticles. Moreover, the applicability of using heterologously expressed oxygen binding proteins and fluorescent proteins to determine changes in the cellular oxygen concentration are discussed as potential non-invasive cellular oxygen reporters.
引用
收藏
页码:7015 / 7032
页数:18
相关论文
共 68 条
[1]   Probes and polymers for optical sensing of oxygen [J].
Amao, Y .
MICROCHIMICA ACTA, 2003, 143 (01) :1-12
[2]   Green luminescent iridium(III) complex immobilized in fluoropolymer film as optical oxygen-sensing material [J].
Amao, Y ;
Ishikawa, Y ;
Okura, I .
ANALYTICA CHIMICA ACTA, 2001, 445 (02) :177-182
[3]  
[Anonymous], MITOXPRESS
[4]   Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere:: a microelectrode and modelling study with Phragmites australis [J].
Armstrong, W ;
Cousins, D ;
Armstrong, J ;
Turner, DW ;
Beckett, PM .
ANNALS OF BOTANY, 2000, 86 (03) :687-703
[5]   In vivo phosphorescence imaging of pO2 using planar oxygen sensors [J].
Babilas, P ;
Liebsch, G ;
Schacht, V ;
Klimant, I ;
Wolfbeis, OS ;
Szeimies, RM ;
Abels, C .
MICROCIRCULATION, 2005, 12 (06) :477-487
[6]   In vivo O2 measurement inside single photosynthetic cells [J].
Bai, Seoung-Jai ;
Ryu, WonHyoung ;
Fasching, Rainer J. ;
Grossman, Arthur R. ;
Prinz, Fritz B. .
BIOTECHNOLOGY LETTERS, 2011, 33 (08) :1675-1681
[7]   Making sense of low oxygen sensing [J].
Bailey-Serres, Julia ;
Fukao, Takeshi ;
Gibbs, Daniel J. ;
Holdsworth, Michael J. ;
Lee, Seung Cho ;
Licausi, Francesco ;
Perata, Pierdomenico ;
Voesenek, Laurentius A. C. J. ;
van Dongen, Joost T. .
TRENDS IN PLANT SCIENCE, 2012, 17 (03) :129-138
[8]   Green fluorescent proteins are light-induced electron donors [J].
Bogdanov, Alexey M. ;
Mishin, Alexander S. ;
Yampolsky, Ilia V. ;
Belousov, Vsevolod V. ;
Chudakov, Dmitriy M. ;
Subach, Fedor V. ;
Verkhusha, Vladislav V. ;
Lukyanov, Sergey ;
Lukyanov, Konstantin A. .
NATURE CHEMICAL BIOLOGY, 2009, 5 (07) :459-461
[9]   Ultrabright oxygen optodes based on cyclometalated lridium(III) coumarin complexes [J].
Borisov, Sergey M. ;
Klimant, Ingo .
ANALYTICAL CHEMISTRY, 2007, 79 (19) :7501-7509
[10]   Phosphorescent Platinum(II) and Palladium(II) Complexes with Azatetrabenzoporphyrins-New Red Laser Diode-Compatible Indicators for Optical Oxygen Sensing [J].
Borisov, Sergey M. ;
Zenkl, Gunter ;
Klimant, Ingo .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (02) :366-374