Non-polynomial spline approach in two-dimensional fractional sub-diffusion problems

被引:11
作者
Li, Xuhao [1 ]
Wong, Patricia J. Y. [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
Non-polynomial spline; Two-dimensional; Sub-diffusion equation; Fractional differential equation; Numerical solution; FINITE-DIFFERENCE SCHEME; WAVE; EQUATIONS;
D O I
10.1016/j.amc.2019.03.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new numerical scheme for two-dimensional fractional subdiffusion problems using non-polynomial spline. The solvability, stability and convergence of the proposed method are established using the well known discrete energy methodology. It is shown that the spatial convergence order is at least 4.5 which improves the best result achieved to date. We also carry out simulation to demonstrate the accuracy and efficiency of the proposed scheme and to compare with other methods. (c) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:222 / 242
页数:21
相关论文
共 28 条
[1]   A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term [J].
Abbaszadeh, Mostafa ;
Mohebbi, Akbar .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (08) :1345-1359
[2]  
Agarwal RP., 1992, DIFFERENCE EQUATIONS
[3]  
Agrawal OP., 2000, Fract. Calculus Appl. Anal, V3, P1
[4]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[5]   DIRECT METHODS FOR SOLVING POISSONS EQUATIONS [J].
BUZBEE, BL ;
GOLUB, GH ;
NIELSON, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :627-&
[6]   Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation [J].
Chen, Chang-Ming ;
Liu, Fawang ;
Turner, Ian ;
Anh, Vo .
NUMERICAL ALGORITHMS, 2010, 54 (01) :1-21
[7]   Numerical simulation for the three-dimension fractional sub-diffusion equation [J].
Chen, J. ;
Liu, F. ;
Liu, Q. ;
Chen, X. ;
Anh, V. ;
Turner, I. ;
Burrage, K. .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) :3695-3705
[8]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[9]  
Diethelm K., 2010, LECT NOTES MATH
[10]   A compact difference scheme for the fractional diffusion-wave equation [J].
Du, R. ;
Cao, W. R. ;
Sun, Z. Z. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) :2998-3007