SOME OSTROWSKI TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS FOR h-CONVEX FUNCTIONS

被引:1
作者
Liu, Wenjun [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ostrowski type inequality; h-convex function; Riemann-Liouville fractional integral; MAPPINGS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, some Ostrowski type inequalities via Riemann-Liouville fractional integrals for h-convex functions, which are super-multiplicative or super-additive, are given. These results not only generalize those of [24, 25], but also provide new estimates on these types of Ostrowski inequalities for fractional integrals.
引用
收藏
页码:998 / 1004
页数:7
相关论文
共 26 条
[1]   Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense [J].
Alomari, M. ;
Darus, M. ;
Dragomir, S. S. ;
Cerone, P. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (09) :1071-1076
[2]   A superadditive property of Hadamard's gamma function [J].
Alzer, Horst .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2009, 79 (01) :11-23
[3]  
[Anonymous], JIPAM J INEQUAL PURE
[4]  
[Anonymous], JIPAM J INEQUAL PURE
[5]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[6]  
[Anonymous], CISM COURSES LECT
[7]  
[Anonymous], NUMERICAL MATH MATH
[8]  
[Anonymous], 2013, J INEQUAL APPL
[9]  
[Anonymous], JIPAM J INEQUAL PURE
[10]   Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities [J].
Bombardelli, Mea ;
Varosanec, Sanja .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) :1869-1877