Fabrication of metallic nanopatterns with ultrasmooth surface on various substrates through lift-off and transfer process

被引:7
作者
Cai Hongbing [1 ,2 ]
Ren Wenzhen [1 ,2 ]
Zhang Kun [1 ,2 ]
Tian Yangchao [3 ]
Pan Nan [1 ,2 ,4 ]
Luo Yi [1 ,2 ,4 ]
Wang Xiaoping [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230027, Peoples R China
[4] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
关键词
NANOIMPRINT LITHOGRAPHY; PLASMONIC ARRAYS; RING-RESONATORS; LARGE-AREA; METAMATERIALS; NANOSTRUCTURES; TRANSMISSION; RESONANCES; SENSOR; FLAT;
D O I
10.1364/OE.21.032417
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The smooth surface of the metallic nanostructure is essential for the propagation of surface plasmon polaritons. In this paper, we present a novel method to fabricate the metallic nanopatterns with ultra-smooth surface on various substrates. By using a silica film as the sacrificial layer, we show that the prefabricated metallic nanopatterns produced by electron beam lithography and film deposition can be hydrolyzed and transferred onto a designated substrate. The ultra-smooth surface morphology of nanopatterns has been characterized and verified by scanning electron microscopy and atomic force microscopy. More importantly, we demonstrate that this method can successfully produce a variety of nanostructures with high product yield, even onto the uneven substrate. The results indicate that our proposed method is a promising and versatile means to fabricate multiplicate smooth metallic nanostructure on various substrates for the application of nanophotonic devices. (C) 2013 Optical Society of America
引用
收藏
页码:32417 / 32424
页数:8
相关论文
共 41 条
[1]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[2]   High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy [J].
Aksu, Serap ;
Yanik, Ahmet A. ;
Adato, Ronen ;
Artar, Alp ;
Huang, Min ;
Altug, Hatice .
NANO LETTERS, 2010, 10 (07) :2511-2518
[3]  
[Anonymous], OPT EXPRESS
[4]  
[Anonymous], SURFACE PLASMONS SMO
[5]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[6]   Figures of merit for surface plasmon waveguides [J].
Berini, Pierre .
OPTICS EXPRESS, 2006, 14 (26) :13030-13042
[7]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[8]   A multi-functional plasmonic biosensor [J].
Chang, Yun-Tzu ;
Lai, Yueh-Chun ;
Li, Chung-Tien ;
Chen, Cheng-Kuang ;
Yen, Ta-Jen .
OPTICS EXPRESS, 2010, 18 (09) :9561-9569
[9]   Guided and fluidic self-assembly of microstructures using railed microfluidic channels [J].
Chung, Su Eun ;
Park, Wook ;
Shin, Sunghwan ;
Lee, Seung Ah ;
Kwon, Sunghoon .
NATURE MATERIALS, 2008, 7 (07) :581-587
[10]   Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20-100-nm range [J].
Ederth, T .
PHYSICAL REVIEW A, 2000, 62 (06) :062104-062101