Differential Harnack estimates for a nonlinear heat equation

被引:43
作者
Cao, Xiaodong [1 ]
Ljungberg, Benjamin Fayyazuddin [2 ]
Liu, Bowei [3 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Cornell Univ, Ithaca, NY 14853 USA
[3] Princeton Univ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Differential Harnack inequality; RIEMANNIAN-MANIFOLDS; INEQUALITIES;
D O I
10.1016/j.jfa.2013.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider positive solutions to the semilinear heat equation w(t) = Delta w aw log w, a not equal 0, on complete Riemannian manifolds without boundary. This equation has applications to studying Ricci flow and gradient Ricci solitons. We derive several differential Hamack inequalities which improve on those of Y. Yang (2008) [13]. We use these inequalities to derive bounds on gradient Ricci solitons. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2312 / 2330
页数:19
相关论文
共 13 条
[1]   Differential Harnack estimates for backward heat equations with potentials under the Ricci flow [J].
Cao, Xiaodong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) :1024-1038
[2]   DIFFERENTIAL HARNACK ESTIMATES FOR TIME-DEPENDENT HEAT EQUATIONS WITH POTENTIALS [J].
Cao, Xiaodong ;
Hamilton, Richard S. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) :989-1000
[3]  
Chow B., 2006, GRAD STUD MATH, V77
[4]  
Chung FRK, 1996, MATH RES LETT, V3, P793
[5]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[6]  
Hamilton Richard S., 2011, ADV LECT MATH ALM, V17, P329
[7]  
LI JY, 1991, J FUNCT ANAL, V100, P233
[8]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[9]   Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds [J].
Ma, Li .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (01) :374-382
[10]  
Perelman G., 2002, ENTROPY FORMULA RICC