Enzymology of Pyran RingA Formation in Salinomycin Biosynthesis

被引:36
作者
Luhavaya, Hanna [1 ]
Dias, Marcio V. B. [2 ]
Williams, Simon R. [3 ]
Hong, Hui [1 ]
de Oliveira, Luciana G. [4 ]
Leadlay, Peter F. [1 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge CB2 1GA, England
[2] Univ Sao Paulo, Inst Biomed Sci, Dept Microbiol, BR-05508000 Sao Paulo, SP, Brazil
[3] Univ Cambridge, Univ Chem Lab, Cambridge CB2 1EW, England
[4] Univ Campinas UNICAMP, Dept Organ Chem, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会; 英国生物技术与生命科学研究理事会;
关键词
biosynthesis; cyclases; dehydratases; polyethers; polyketide synthases; GENE-CLUSTER; POLYKETIDE BIOSYNTHESIS; COMBINATORIAL BIOSYNTHESIS; POLYETHER SALINOMYCIN; MONENSIN BIOSYNTHESIS; ENZYMATIC CATALYSIS; MECHANISMS; SYNTHASES; PRODUCT; INTERMEDIATE;
D O I
10.1002/anie.201507090
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tetrahydropyran rings are a common feature of complex polyketide natural products, but much remains to be learned about the enzymology of their formation. The enzyme SalBIII from the salinomycin biosynthetic pathway resembles other polyether epoxide hydrolases/cyclases of the MonB family, but SalBIII plays no role in the conventional cascade of ring opening/closing. Mutation in the salBIII gene gave a metabolite in which ringA is not formed. Using this metabolite invitro as a substrate analogue, SalBIII has been shown to form pyran ringA. We have determined the X-ray crystal structure of SalBIII, and structure-guided mutagenesis of putative active-site residues has identified Asp38 and Asp104 as an essential catalytic dyad. The demonstrated pyran synthase activity of SalBIII further extends the impressive catalytic versatility of + barrel fold proteins.
引用
收藏
页码:13622 / 13625
页数:4
相关论文
共 43 条
[1]   Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site [J].
Arand, M ;
Hallberg, BM ;
Zou, JY ;
Bergfors, T ;
Oesch, F ;
van der Werf, MJ ;
de Bont, JAM ;
Jones, TA ;
Mowbray, SL .
EMBO JOURNAL, 2003, 22 (11) :2583-2592
[2]  
Berkhan G, 2014, ANGEW CHEM, V126, P14464
[3]   A Dehydratase Domain in Ambruticin Biosynthesis Displays Additional Activity as a Pyran-Forming Cyclase [J].
Berkhan, Gesche ;
Hahn, Frank .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (51) :14240-14244
[4]   Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms [J].
Fischbach, Michael A. ;
Walsh, Christopher T. .
CHEMICAL REVIEWS, 2006, 106 (08) :3468-3496
[5]   Evidence for the role of the monB genes in polyether ring formation during monensin biosynthesis [J].
Gallimore, AR ;
Stark, CBW ;
Bhatt, A ;
Harvey, BM ;
Demydchuk, Y ;
Bolanos-Garcia, V ;
Fowler, DJ ;
Staunton, J ;
Leadlay, PF ;
Spencer, JB .
CHEMISTRY & BIOLOGY, 2006, 13 (04) :453-460
[6]   AN EXPLANATION FOR RAPID ENZYME-CATALYZED PROTON ABSTRACTION FROM CARBON ACIDS - IMPORTANCE OF LATE TRANSITION-STATES IN CONCERTED MECHANISMS [J].
GERLT, JA ;
GASSMAN, PG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (24) :11552-11568
[7]   Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening [J].
Gupta, Piyush B. ;
Onder, Tamer T. ;
Jiang, Guozhi ;
Tao, Kai ;
Kuperwasser, Charlotte ;
Weinberg, Robert A. ;
Lander, Eric S. .
CELL, 2009, 138 (04) :645-659
[8]  
Hertweck C., 2009, Angew. Chem. Int. Ed, V121, P4782, DOI DOI 10.1002/ANGE.200806121
[9]   The Biosynthetic Logic of Polyketide Diversity [J].
Hertweck, Christian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (26) :4688-4716
[10]   Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis [J].
Hotta, Kinya ;
Chen, Xi ;
Paton, Robert S. ;
Minami, Atsushi ;
Li, Hao ;
Swaminathan, Kunchithapadam ;
Mathews, Irimpan I. ;
Watanabe, Kenji ;
Oikawa, Hideaki ;
Houk, Kendall N. ;
Kim, Chu-Young .
NATURE, 2012, 483 (7389) :355-U154