An application of a recursive Kalman filtering algorithm in rotating machinery fault diagnosis

被引:34
|
作者
Wu, JD
Huang, CW
Huang, RW
机构
[1] Da Yeh Univ, Dept Mech & Automat Engn, Changhua 515, Taiwan
[2] Natl Changhua Univ Educ, Dept Mech Engn, Changhua 515, Taiwan
关键词
fault diagnosis; order tracking; adaptive Kalman filter;
D O I
10.1016/j.ndteint.2003.11.006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, an application of adaptive order tracking fault diagnosis technique based on recursive Kalman filtering algorithm is presented. Order tracking fault diagnosis technique is one of the important tools for fault diagnosis of rotating machinery. Conventional methods of order tracking are primarily based on Fourier analysis with reference to shaft speed. In this study, a high-resolution order tracking method with adaptive Kalman filter is used to diagnose the fault in a gear set and damaged engine turbocharger wheel blades. The adaptive Kalman filtering algorithm can overcome the problems encountered in conventional methods. The problem is treated as the tracking of frequency-varying bandpass signals. Ordered amplitudes can be calculated with high resolution after experimental implementation. Experiments are also carried out to evaluate the proposed system in gear-set defect diagnosis and engine turbocharger wheel blades damaged under various conditions. The experimental results indicate that the proposed algorithm is effective in fault diagnosis of both cases. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:411 / 419
页数:9
相关论文
共 50 条
  • [1] Generalized sparse filtering for rotating machinery fault diagnosis
    Chun Cheng
    Yan Hu
    Jinrui Wang
    Haining Liu
    Michael Pecht
    The Journal of Supercomputing, 2021, 77 : 3402 - 3421
  • [2] Generalized sparse filtering for rotating machinery fault diagnosis
    Cheng, Chun
    Hu, Yan
    Wang, Jinrui
    Liu, Haining
    Pecht, Michael
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (04): : 3402 - 3421
  • [3] Intrinsic component filtering for fault diagnosis of rotating machinery
    Zongzhen ZHANG
    Shunming LI
    Jiantao LU
    Yu XIN
    Huijie MA
    Chinese Journal of Aeronautics, 2021, 34 (01) : 397 - 409
  • [4] Intrinsic component filtering for fault diagnosis of rotating machinery
    Zhang, Zongzhen
    Li, Shunming
    Lu, Jiantao
    Xin, Yu
    Ma, Huijie
    CHINESE JOURNAL OF AERONAUTICS, 2021, 34 (01) : 397 - 409
  • [5] Intrinsic component filtering for fault diagnosis of rotating machinery
    Zongzhen ZHANG
    Shunming LI
    Jiantao LU
    Yu XIN
    Huijie MA
    Chinese Journal of Aeronautics , 2021, (01) : 397 - 409
  • [6] Improved LPCDA Algorithm and Its Application in Fault Diagnosis of Rotating Machinery
    Xue Y.
    Zhao R.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2023, 43 (01): : 132 - 138
  • [7] Fault Diagnosis of Rotating Machinery based on the Minutiae Algorithm
    Mogal, Shyam
    Deshmukh, Sudhanshu
    Talekar, Sopan
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (05) : 11649 - 11654
  • [8] Parallel Cross-Sparse Filtering Networks and Its Application on Fault Diagnosis of Rotating Machinery
    Wang, Shan
    Han, Baokun
    Bao, Huaiqian
    Wang, Jinrui
    Zhang, Zongzhen
    JOURNAL OF SENSORS, 2022, 2022
  • [9] Enhanced sparse filtering with strong noise adaptability and its application on rotating machinery fault diagnosis
    Zhang, Zongzhen
    Li, Shunming
    Wang, Jinrui
    Xin, Yu
    An, Zenghui
    Jiang, Xingxing
    NEUROCOMPUTING, 2020, 398 : 31 - 44
  • [10] Amplitude filtering characteristics of singular value decomposition and its application to fault diagnosis of rotating machinery
    Guo, Mingjun
    Li, Weiguang
    Yang, Qijiang
    Zhao, Xuezhi
    Tang, Yalian
    MEASUREMENT, 2020, 154