Simulation of Methane Steam Reforming Enhanced by in Situ CO2 Sorption Using K2CO3-Promoted Hydrotalcites for H2 Production

被引:24
作者
Chanburanasiri, Naruewan [1 ]
Ribeiro, Ana M. [2 ]
Rodrigues, Alirio E. [2 ]
Laosiripojana, Navadol [3 ]
Assabumrungrat, Suttichai [1 ]
机构
[1] Chulalongkorn Univ, Dept Chem Engn, Fac Engn, Ctr Excellence Catalysis & Catalyt React Engn, Bangkok 10330, Thailand
[2] Univ Porto, Dept Chem Engn, Fac Engn, Associate Lab,LSRE, P-4200465 Oporto, Portugal
[3] King Mongkuts Univ Technol Thonburi, Joint Grad Sch Energy & Environm, Bangkok 10140, Thailand
关键词
WATER-GAS SHIFT; HYDROGEN-PRODUCTION; CARBON-DIOXIDE; ADSORPTION; SORBENT; CAPTURE; KINETICS; LI2ZRO3;
D O I
10.1021/ef302043e
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The hydrogen production performance of sorption-enhanced methane steam reforming (SESMR) was investigated in this study. Three different K2CO3-promoted hydrotalcites (HTCs), including HTC A, industrial K2CO3-promoted HTC reported in the work by Ding and Alpay (Ding, Y.; Alpay, E. Chem. Eng. Sci. 2000, SS, 3461-3474); HTC B, commercial HTC from SASOL impregnated with K2CO3 in the work by Oliveira et al. (Oliveira, E. L. G.; Grande, C. A.; Rodrigues, A. E. Sep. Purif. Technol. 2008, 62, 137-147); and HTC C, commercial K2CO3-promoted HTC from SASOL, were considered. A set of experiments was carried out to measure CO2 adsorption on HTC C, and a one-dimensional (1D) heterogeneous dynamic fixed-bed reactor mathematical model was developed to simulate the performance of SEMSR. It was observed that the CO2 adsorption characteristics were different among the HTCs, resulting in different sorption-enhanced characteristic curves. The reaction period that can be operated to produce the high-purity hydrogen (99.99%) depends upon the sorbent type and operating conditions. The increase of the steam/methane ratio leads to the increase of the pre-breakthrough period. The increase of the operating pressure results in the increase of the pre-breakthrough period when the S/C value is high enough. The temperature of 863 K is suitable for the operation at a low S/C value, while the temperature of 773 and 740 K is appropriate for higher S/C values. The system using HTC B offers the best performance with the pre-breakthrough period of 720 min at the following operating conditions: F-tot, 0.73 mmol/min; T, 773 K; P, 0.2 MPa; S/C, 11.5; and catalyst/total solid, 0.05, while the system with HTC A offers 126.67 mm, which is better than 20 min of HTC C.
引用
收藏
页码:4457 / 4470
页数:14
相关论文
共 45 条
  • [1] Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review
    Barelli, L.
    Bidini, G.
    Gallorini, F.
    Servili, S.
    [J]. ENERGY, 2008, 33 (04) : 554 - 570
  • [2] Sorption enhanced reaction process for direct production of fuel-cell grade hydrogen by low temperature catalytic steam-methane reforming
    Beaver, Michael G.
    Caram, Hugo S.
    Sircar, Shivaji
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (07) : 1998 - 2002
  • [3] Hydrogen Production via Sorption Enhanced Steam Methane Reforming Process Using Ni/CaO Multifunctional Catalyst
    Chanburanasiri, Naruewan
    Ribeiro, Ana M.
    Rodrigues, Alirio E.
    Arpornwichanop, Amornchai
    Laosiripojana, Navadol
    Praserthdam, Piyasan
    Assabumrungrat, Suttichai
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (24) : 13662 - 13671
  • [4] Hydrogen production through CO2 sorption-enhanced methane steam reforming: Comparison between different adsorbents
    Chen YuMing
    Zhao YongChun
    Zhang JunYing
    Zheng ChuGuang
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2011, 54 (11) : 2999 - 3008
  • [5] Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources
    Choi, Sunho
    Drese, Jeffrey H.
    Jones, Christopher W.
    [J]. CHEMSUSCHEM, 2009, 2 (09) : 796 - 854
  • [6] Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent
    Ding, Y
    Alpay, E
    [J]. CHEMICAL ENGINEERING SCIENCE, 2000, 55 (17) : 3461 - 3474
  • [7] Adsorption-enhanced steam-methane reforming
    Ding, Y
    Alpay, E
    [J]. CHEMICAL ENGINEERING SCIENCE, 2000, 55 (18) : 3929 - 3940
  • [8] Kinetic and structural requirements for a CO2 adsorbent in sorption enhanced catalytic reforming of methane - Part I: Reaction kinetics and sorbent capacity
    Halabi, M. H.
    de Croon, M. H. J. M.
    van der Schaaf, J.
    Cobden, P. D.
    Schouten, J. C.
    [J]. FUEL, 2012, 99 : 154 - 164
  • [9] A novel catalyst-sorbent system for an efficient H2 production with in-situ CO2 capture
    Halabi, M. H.
    de Croon, M. H. J. M.
    van der Schaaf, J.
    Cobden, P. D.
    Schouten, J. C.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (06) : 4987 - 4996
  • [10] High capacity potassium-promoted hydrotalcite for CO2 capture in H2 production
    Halabi, M. H.
    de Croon, M. H. J. M.
    van der Schaaf, J.
    Cobden, P. D.
    Schouten, J. C.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (05) : 4516 - 4525