Exact and Analytic-Numerical Solutions of Lagging Models of Heat Transfer in a Semi-Infinite Medium

被引:8
作者
Castro, M. A. [1 ]
Rodriguez, F. [1 ]
Escolano, J. [1 ]
Martin, J. A. [1 ]
机构
[1] Univ Alicante, Dept Matemat Aplicada, E-03080 Alicante, Spain
关键词
FINITE-DIFFERENCE SCHEME; TRANSPORT-EQUATION; LA CHALEUR; DIFFUSION EQUATION; MIXED PROBLEMS; THIN-FILM; CONDUCTION; PROPAGATION; MICROSCALE; NANOFLUIDS;
D O I
10.1155/2013/397053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Different non-Fourier models of heat conduction have been considered in recent years, in a growing area of applications, to model microscale and ultrafast, transient, nonequilibrium responses in heat and mass transfer. In this work, using Fourier transforms, we obtain exact solutions for different lagging models of heat conduction in a semi-infinite domain, which allow the construction of analytic-numerical solutions with prescribed accuracy. Examples of numerical computations, comparing the properties of the models considered, are presented.
引用
收藏
页数:6
相关论文
共 38 条
[1]   Solution for non-Fourier dual phase lag heat conduction in a semiinfinite slab with surface heat flux [J].
Antaki, PJ .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1998, 41 (14) :2253-2258
[2]  
Bracewell RB, 1965, The Fourier transform and its application
[3]   Difference schemes for numerical solutions of lagging models of heat conduction [J].
Cabrera, J. ;
Castro, M. A. ;
Rodriguez, F. ;
Martin, J. A. .
MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (7-8) :1625-1632
[4]  
Castro M. A., 2013, INT J COMPUTER MATH
[5]  
CATTANEO C, 1958, CR HEBD ACAD SCI, V247, P431
[6]  
Caxslaw H. S., 1995, CONDUCTION HEAT SOLI
[7]   A compact finite-difference scheme for solving a one-dimensional heat transport equation at the microscale [J].
Dai, WH ;
Nassar, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (02) :431-441
[8]  
Dai WZ, 1999, NUMER METH PART D E, V15, P697, DOI 10.1002/(SICI)1098-2426(199911)15:6<697::AID-NUM6>3.0.CO
[9]  
2-#
[10]  
Dai WZ, 2000, NUMER METH PART D E, V16, P441, DOI 10.1002/1098-2426(200009)16:5<441::AID-NUM3>3.0.CO