A machine learning efficient frontier

被引:5
|
作者
Clark, Brian [1 ]
Feinstein, Zachary [2 ]
Simaan, Majeed [2 ]
机构
[1] Rensselaer Polytech Inst, Lally Sch Management, 110 8th St,Pittsburgh Bldg, Troy, NY 12180 USA
[2] Stevens Inst Technol, Sch Business, Babbio Ctr, 1 Castle Point Terrace, Hoboken, NJ 07030 USA
关键词
Portfolio theory; Machine learning; Tactical asset allocation; Estimation risk; PORTFOLIO; REGULARIZATION; VOLATILITY; SELECTION;
D O I
10.1016/j.orl.2020.07.016
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a simple approach to bridge between portfolio theory and machine learning. The outcome is an out-of-sample machine learning efficient frontier based on two assets, high risk and low risk. By rotating between the two assets, we show that the proposed frontier dominates the mean-variance efficient frontier out-of-sample. Our results, therefore, shed important light on the appeal of machine learning into portfolio selection under estimation risk. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:630 / 634
页数:5
相关论文
共 50 条
  • [31] Machine learning algorithms for efficient water quality prediction
    Azrour, Mourade
    Mabrouki, Jamal
    Fattah, Ghizlane
    Guezzaz, Azedine
    Aziz, Faissal
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (02) : 2793 - 2801
  • [32] Efficient Pruning for Machine Learning Under Homomorphic Encryption
    Aharoni, Ehud
    Baruch, Moran
    Bose, Pradip
    Buyuktosunoglu, Alper
    Drucker, Nir
    Pal, Subhankar
    Pelleg, Tomer
    Sarpatwar, Kanthi
    Shaul, Hayim
    Soceanu, Omri
    Vaculin, Roman
    COMPUTER SECURITY - ESORICS 2023, PT IV, 2024, 14347 : 204 - 225
  • [33] Constructing an Efficient Machine Learning Model for Tornado Prediction
    Aleskerov, Fuad
    Demin, Sergey
    Richman, Michael B.
    Shvydun, Sergey
    Trafalis, Theodore B.
    Yakuba, Vyacheslav
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2020, 19 (05) : 1177 - 1187
  • [34] Statistical and machine learning approaches for energy efficient buildings
    Paravantis, John A.
    Malefaki, Sonia
    Nikolakopoulos, Pantelis
    Romeos, Alexandros
    Giannadakis, Athanasios
    Giannakopoulos, Evangelos
    Mihalakakou, Giouli
    Souliotis, Manolis
    ENERGY AND BUILDINGS, 2025, 330
  • [35] AN EFFICIENT WAY TO PREDICT THE DISEASE USING MACHINE LEARNING
    Geetha, V
    Reddy, M. Karthik
    Srikanth, P.
    Gomathy, C. K.
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (05) : 992 - 1001
  • [36] Towards Secure and Efficient Outsourcing of Machine Learning Classification
    Zheng, Yifeng
    Duan, Huayi
    Wang, Cong
    COMPUTER SECURITY - ESORICS 2019, PT I, 2019, 11735 : 22 - 40
  • [37] A Hybrid Machine Learning Model for Efficient XML Parsing
    Ali, Muhammad
    Khan, Minhaj Ahmad
    Ur Rasool, Raihan
    IEEE ACCESS, 2025, 13 : 382 - 393
  • [38] EcoVal: An Efficient Data Valuation Framework for Machine Learning
    Tarun, Ayush
    Chundawat, Vikram
    Mandal, Murari
    Tan, Hong Ming
    Chen, Bowei
    Kankanhalli, Mohan
    PROCEEDINGS OF THE 30TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2024, 2024, : 2866 - 2875
  • [39] Machine learning algorithms for efficient water quality prediction
    Mourade Azrour
    Jamal Mabrouki
    Ghizlane Fattah
    Azedine Guezzaz
    Faissal Aziz
    Modeling Earth Systems and Environment, 2022, 8 : 2793 - 2801
  • [40] FlexPoints: Efficient electrocardiogram signal compression for machine learning
    Bulanda, Daniel
    Starzyk, Janusz A.
    Horzyk, Adrian
    JOURNAL OF ELECTROCARDIOLOGY, 2025, 88