A machine learning efficient frontier

被引:5
|
作者
Clark, Brian [1 ]
Feinstein, Zachary [2 ]
Simaan, Majeed [2 ]
机构
[1] Rensselaer Polytech Inst, Lally Sch Management, 110 8th St,Pittsburgh Bldg, Troy, NY 12180 USA
[2] Stevens Inst Technol, Sch Business, Babbio Ctr, 1 Castle Point Terrace, Hoboken, NJ 07030 USA
关键词
Portfolio theory; Machine learning; Tactical asset allocation; Estimation risk; PORTFOLIO; REGULARIZATION; VOLATILITY; SELECTION;
D O I
10.1016/j.orl.2020.07.016
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a simple approach to bridge between portfolio theory and machine learning. The outcome is an out-of-sample machine learning efficient frontier based on two assets, high risk and low risk. By rotating between the two assets, we show that the proposed frontier dominates the mean-variance efficient frontier out-of-sample. Our results, therefore, shed important light on the appeal of machine learning into portfolio selection under estimation risk. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:630 / 634
页数:5
相关论文
共 50 条
  • [21] Machine learning, statistical learning and the future of biological research in psychiatry
    Iniesta, R.
    Stahl, D.
    McGuffin, P.
    PSYCHOLOGICAL MEDICINE, 2016, 46 (12) : 2455 - 2465
  • [22] Supervised Machine Learning: A Brief Primer
    Jiang, Tammy
    Gradus, Jaimie L.
    Rosellini, Anthony J.
    BEHAVIOR THERAPY, 2020, 51 (05) : 675 - 687
  • [23] Bias in Machine Learning: A Literature Review
    Mavrogiorgos, Konstantinos
    Kiourtis, Athanasios
    Mavrogiorgou, Argyro
    Menychtas, Andreas
    Kyriazis, Dimosthenis
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [24] Efficient Machine Learning Technique for Web Page Classification
    Markkandeyan, S.
    Devi, M. Indra
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (12) : 3555 - 3566
  • [25] Efficient design of meganucleases using a machine learning approach
    Mikhail Zaslavskiy
    Claudia Bertonati
    Philippe Duchateau
    Aymeric Duclert
    George H Silva
    BMC Bioinformatics, 15
  • [26] Efficient Email phishing detection using Machine learning
    Abdulraheem, Rana
    Odeh, Ammar
    Al Fayoumi, Mustafa
    Keshta, Ismail
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 354 - 358
  • [27] Efficient quantisation of continuous valued data for machine learning
    Wani, MA
    IC-AI'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 1-III, 2000, : 1521 - 1526
  • [28] Chorus: More Efficient Machine Learning on Serverless Platform
    Yang, Guang
    Liu, Jie
    Wang, Shuai
    Qu, Muzi
    Ye, Dan
    Zhong, Hua
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PT I, DEXA 2024, 2024, 14910 : 179 - 193
  • [29] Efficient Milling Quality Prediction with Explainable Machine Learning
    Gross, Dennis
    Spieker, Helge
    Gotlieb, Arnaud
    Knoblauch, Ricardo
    Elmansori, Mohamed
    IFAC PAPERSONLINE, 2024, 58 (19): : 43 - 48
  • [30] Machine Learning for Smart and Energy-Efficient Buildings
    Das, Hari Prasanna
    Lin, Yu-Wen
    Agwan, Utkarsha
    Spangher, Lucas
    Devonport, Alex
    Yang, Yu
    Drgona, Jan
    Chong, Adrian
    Schiavon, Stefano
    Spanos, Costas J.
    ENVIRONMENTAL DATA SCIENCE, 2024, 3