The obstacle problem for the porous medium equation

被引:33
作者
Boegelein, Verena [1 ]
Lukkari, Teemu [2 ]
Scheven, Christoph [3 ]
机构
[1] Salzburg Univ, Fachbereich Math, A-5020 Salzburg, Austria
[2] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland
[3] Univ Duisburg Essen, Fak Math, D-45127 Essen, Germany
关键词
IRREGULAR OBSTACLES; INEQUALITIES; DEFINITION;
D O I
10.1007/s00208-015-1174-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence results for the obstacle problem related to the porous medium equation. For sufficiently regular obstacles, we find continuous solutions whose time derivative belongs to the dual of a parabolic Sobolev space. We also employ the notion of weak solutions and show that for more general obstacles, such a weak solution exists. The latter result is a consequence of a stability property of weak solutions with respect to the obstacle.
引用
收藏
页码:455 / 499
页数:45
相关论文
共 22 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]  
[Anonymous], 1984, TEUBNER TEXTE MATH
[3]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[4]   Degenerate problems with irregular obstacles [J].
Boegelein, Verena ;
Duzaar, Frank ;
Mingione, Giuseppe .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 :107-160
[5]   Higher integrability in parabolic obstacle problems [J].
Boegelein, Verena ;
Scheven, Christoph .
FORUM MATHEMATICUM, 2012, 24 (05) :931-972
[6]   Uniqueness results for pseudomonotone problems with p>2 [J].
Casado-Diaz, Juan ;
Murat, Francois ;
Porretta, Alessio .
COMPTES RENDUS MATHEMATIQUE, 2007, 344 (08) :487-492
[7]  
Daskalopoulos P, 2007, EMS TRACTS MATH, V1, P1
[8]  
DiBenedetto E, 2012, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4614-1584-8
[9]  
DIBENEDETTO E, 1985, J REINE ANGEW MATH, V357, P1
[10]   Pointwise Hardy inequalities [J].
Hajlasz, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) :417-423