Nonlinear Self-Adjointness and Conservation Laws for the Hyperbolic Geometric Flow Equation

被引:2
作者
Silva, Kenio A. A. [1 ]
机构
[1] Univ Estadual Campinas, Inst Matemat Estat & Comp Cient, BR-13083859 Campinas, SP, Brazil
关键词
Nonlinear self-adjointness; conservation laws; hyperbolic geometric flow equation;
D O I
10.1080/14029251.2013.792467
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear self-adjointness of a class of quasilinear 2D second order evolution equations by applying the method of Ibragimov. Which enables one to establish the conservation laws for any differential equation. We first obtain conditions determining the self-adjointness for a sub-class in the general case. Then, we establish the conservation laws for hyperbolic geometric flow equation on Riemman surfaces.
引用
收藏
页码:28 / 43
页数:16
相关论文
共 14 条
[1]  
[Anonymous], 2010, ARCH ALGA
[2]  
Bozhkov Y., 2012, COMMUNICATION
[3]   Nonlinear self-adjointness of a 2D generalized second order evolution equation [J].
Bozhkov, Yuri ;
Silva, Kenio A. A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) :5069-5078
[4]  
Chao Xu, 2010, ARXIV10011394V1MATHG
[5]   Weak self-adjoint differential equations [J].
Gandarias, M. L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (26)
[6]   Self-adjointness of a generalized Camassa-Holm equation [J].
Ibragimov, N. H. ;
Khamitova, R. S. ;
Valenti, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) :2579-2583
[7]   Nonlinear self-adjointness and conservation laws [J].
Ibragimov, N. H. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (43)
[8]  
Ibragimov N. H., 2006, ARCH ALGA, V3, P55
[9]   A new conservation theorem [J].
Ibragimov, Nail H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) :311-328
[10]   Integrating factors, adjoint equations and Lagrangians [J].
Ibragimov, NH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) :742-757