On the influence of marine biogeochemical processes over CO2 exchange between the atmosphere and ocean

被引:33
|
作者
Humphreys, Matthew P. [1 ,2 ]
Daniels, Chris J. [3 ]
Wolf-Gladrow, Dieter A. [4 ]
Tyrrell, Toby [1 ]
Achterberg, Eric P. [1 ,5 ]
机构
[1] Univ Southampton, Natl Oceanog Ctr Southampton, Ocean & Earth Sci, Waterfront Campus,European Way, Southampton SO14 3ZH, Hants, England
[2] Univ East Anglia, Sch Environm Sci, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[3] Natl Oceanog Ctr Southampton, Ocean Biogeochem & Ecosyst, European Way, Southampton SO14 3ZH, Hants, England
[4] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, D-27570 Bremerhaven, Germany
[5] GEOMAR Helmholtz Ctr Ocean Res Kiel, Wischhofstr 1-3,Build 12, D-24148 Kiel, Germany
基金
英国自然环境研究理事会;
关键词
Carbon dioxide; Air-sea gas exchange; Marine carbonate system; Calcification; INORGANIC CARBON; TOTAL ALKALINITY; DISTRIBUTIONS; DISSOCIATION; VARIABILITY; PRESSURE; FIXATION; 273.15-K; SEAWATER; PACIFIC;
D O I
10.1016/j.marchem.2017.12.006
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ocean holds a large reservoir of carbon dioxide (CO2), and mitigates climate change through uptake of anthropogenic CO2. Fluxes of CO2 between the atmosphere and surface ocean are regulated by a number of physical and biogeochemical processes, resulting in a spatiotemporally heterogeneous CO2 distribution. Determining the influence of each individual process is useful for interpreting marine carbonate system observations, and is also necessary to investigate how changes in these drivers could affect air-sea CO2 exchange. Biogeochemical processes exert an influence primarily through modifying seawater dissolved inorganic carbon (C-T) and total alkalinity (A(T)), thus changing the seawater partial pressure of CO2 (p(sw)). Here, we propose a novel conceptual framework through which the size of the CO2 source or sink generated by any biogeochemical process, denoted Phi, can be evaluated. This is based on the Isocapnic quotient' (Q), which defines the trajectory through (A(T),C-T) phase space for which there is no change in p(sw). We discuss the limitations and uncertainties inherent in this technique, which are negligible for most practical purposes, and its links with existing, related approaches. We investigate the effect on Phi of spatiotemporal heterogeneity in Q in the present day surface ocean for several key biogeochemical processes. This leads the magnitude of the CO2 source or sink generated by processes that modify A(T) to vary spatiotemporally. Finally, we consider how the strength of each process as a CO2 source or sink may change in a warmer, higher-CO2 future ocean.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [41] Spatiotemporal Variability in Lake-Atmosphere Net CO2 Exchange in the Littoral Zone of an Oligotrophic Lake
    Spafford, Lynsay
    Risk, David
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2018, 123 (04) : 1260 - 1276
  • [42] Main drivers of diffusive and advective processes of CO2-gas exchange between a shallow vadose zone and the atmosphere
    Garcia-Anton, E.
    Cuezva, S.
    Fernandez-Cortes, A.
    Benavente, D.
    Sanchez-Moral, S.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2014, 21 : 113 - 129
  • [43] Environmental controls over soil-atmosphere exchange of N2O, NO, and CO2 in a temperate Norway spruce forest
    Wu, Xing
    Brueggemann, Nicolas
    Gasche, Rainer
    Shen, Zhenyao
    Wolf, Benjamin
    Butterbach-Bahl, Klaus
    GLOBAL BIOGEOCHEMICAL CYCLES, 2010, 24
  • [44] CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems
    Bach, Lennart T. T.
    Gill, Sophie J. J.
    Rickaby, Rosalind E. M.
    Gore, Sarah
    Renforth, Phil
    FRONTIERS IN CLIMATE, 2019, 1
  • [45] Sea-air CO2 exchange in the western Arctic coastal ocean
    Evans, Wiley
    Mathis, Jeremy T.
    Cross, Jessica N.
    Bates, Nicholas R.
    Frey, Karen E.
    Else, Brent G. T.
    Papkyriakou, Tim N.
    DeGrandpre, Mike D.
    Islam, Fakhrul
    Cai, Wei-Jun
    Chen, Baoshan
    Yamamoto-Kawai, Michiyo
    Carmack, Eddy
    Williams, William. J.
    Takahashi, Taro
    GLOBAL BIOGEOCHEMICAL CYCLES, 2015, 29 (08) : 1190 - 1209
  • [46] Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment
    Marrec, P.
    Cariou, T.
    Latimier, M.
    Mace, E.
    Morin, P.
    Vernet, M.
    Bozec, Y.
    JOURNAL OF MARINE SYSTEMS, 2014, 140 : 26 - 38
  • [47] The role of Southern Ocean processes in orbital and millennial CO2 variations - A synthesis
    Fischer, Hubertus
    Schmitt, Jochen
    Luethi, Dieter
    Stocker, Thomas F.
    Tschumi, Tobias
    Parekh, Payal
    Joos, Fortunat
    Koehler, Peter
    Voelker, Christoph
    Gersonde, Rainer
    Barbante, Carlo
    Le Floch, Martine
    Raynaud, Dominique
    Wolff, Eric
    QUATERNARY SCIENCE REVIEWS, 2010, 29 (1-2) : 193 - 205
  • [48] Atmospheric CO2 variation over the Baltic Sea and the impact on air-sea exchange
    Rutgersson, Anna
    Norman, Maria
    Astrom, Gustav
    BOREAL ENVIRONMENT RESEARCH, 2009, 14 (01): : 238 - 249
  • [49] An improved isotopic method for partitioning net ecosystem-atmosphere CO2 exchange
    Wehr, R.
    Saleska, S. R.
    AGRICULTURAL AND FOREST METEOROLOGY, 2015, 214 : 515 - 531
  • [50] Trends in anthropogenic CO2 in water masses of the Subtropical North Atlantic Ocean
    Guallart, Elisa F.
    Schuster, Ute
    Fajar, Noelia M.
    Legge, Oliver
    Brown, Peter
    Pelejero, Carles
    Messias, Marie-Jose
    Calvo, Eva
    Watson, Andrew
    Rios, Aida F.
    Perez, Fiz F.
    PROGRESS IN OCEANOGRAPHY, 2015, 131 : 21 - 32