On the influence of marine biogeochemical processes over CO2 exchange between the atmosphere and ocean

被引:33
|
作者
Humphreys, Matthew P. [1 ,2 ]
Daniels, Chris J. [3 ]
Wolf-Gladrow, Dieter A. [4 ]
Tyrrell, Toby [1 ]
Achterberg, Eric P. [1 ,5 ]
机构
[1] Univ Southampton, Natl Oceanog Ctr Southampton, Ocean & Earth Sci, Waterfront Campus,European Way, Southampton SO14 3ZH, Hants, England
[2] Univ East Anglia, Sch Environm Sci, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[3] Natl Oceanog Ctr Southampton, Ocean Biogeochem & Ecosyst, European Way, Southampton SO14 3ZH, Hants, England
[4] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, D-27570 Bremerhaven, Germany
[5] GEOMAR Helmholtz Ctr Ocean Res Kiel, Wischhofstr 1-3,Build 12, D-24148 Kiel, Germany
基金
英国自然环境研究理事会;
关键词
Carbon dioxide; Air-sea gas exchange; Marine carbonate system; Calcification; INORGANIC CARBON; TOTAL ALKALINITY; DISTRIBUTIONS; DISSOCIATION; VARIABILITY; PRESSURE; FIXATION; 273.15-K; SEAWATER; PACIFIC;
D O I
10.1016/j.marchem.2017.12.006
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ocean holds a large reservoir of carbon dioxide (CO2), and mitigates climate change through uptake of anthropogenic CO2. Fluxes of CO2 between the atmosphere and surface ocean are regulated by a number of physical and biogeochemical processes, resulting in a spatiotemporally heterogeneous CO2 distribution. Determining the influence of each individual process is useful for interpreting marine carbonate system observations, and is also necessary to investigate how changes in these drivers could affect air-sea CO2 exchange. Biogeochemical processes exert an influence primarily through modifying seawater dissolved inorganic carbon (C-T) and total alkalinity (A(T)), thus changing the seawater partial pressure of CO2 (p(sw)). Here, we propose a novel conceptual framework through which the size of the CO2 source or sink generated by any biogeochemical process, denoted Phi, can be evaluated. This is based on the Isocapnic quotient' (Q), which defines the trajectory through (A(T),C-T) phase space for which there is no change in p(sw). We discuss the limitations and uncertainties inherent in this technique, which are negligible for most practical purposes, and its links with existing, related approaches. We investigate the effect on Phi of spatiotemporal heterogeneity in Q in the present day surface ocean for several key biogeochemical processes. This leads the magnitude of the CO2 source or sink generated by processes that modify A(T) to vary spatiotemporally. Finally, we consider how the strength of each process as a CO2 source or sink may change in a warmer, higher-CO2 future ocean.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] Multiple Factors driving Variability of CO2 Exchange Between the Ocean and Atmosphere in a Tropical Coral Reef Environment
    Massaro, Rachel F. S.
    De Carlo, Eric Heinen
    Drupp, Patrick S.
    Mackenzie, Fred T.
    Jones, Stacy Maenner
    Shamberger, Katie E.
    Sabine, Christopher L.
    Feely, Richard A.
    AQUATIC GEOCHEMISTRY, 2012, 18 (04) : 357 - 386
  • [2] Multiple Factors driving Variability of CO2 Exchange Between the Ocean and Atmosphere in a Tropical Coral Reef Environment
    Rachel F. S. Massaro
    Eric Heinen De Carlo
    Patrick S. Drupp
    Fred T. Mackenzie
    Stacy Maenner Jones
    Katie E. Shamberger
    Christopher L. Sabine
    Richard A. Feely
    Aquatic Geochemistry, 2012, 18 : 357 - 386
  • [3] Ocean biogeochemical reconstructions to estimate historical ocean CO2 uptake
    Bernardello, Raffaele
    Sicardi, Valentina
    Lapin, Vladimir
    Ortega, Pablo
    Ruprich-Robert, Yohan
    Tourigny, Etienne
    Ferrer, Eric
    EARTH SYSTEM DYNAMICS, 2024, 15 (05) : 1255 - 1275
  • [4] Biogeochemical Characteristics of the Surface Layer and CO2 Fluxes in the Ocean - Atmosphere System in the Fjords of Western Spitsbergen
    Alekseeva, N. K.
    Nikulina, A. L.
    Bloshkina, E. V.
    Shved, Ya. V.
    Ryzhov, I. V.
    Novikhin, A. E.
    Makhotin, M. S.
    PHYSICAL OCEANOGRAPHY, 2024, 31 (06):
  • [5] Quantifying the drivers of ocean-atmosphere CO2 fluxes
    Lauderdale, Jonathan M.
    Dutkiewicz, Stephanie
    Williams, Richard G.
    Follows, Michael J.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2016, 30 (07) : 983 - 999
  • [6] Parameterization of atmosphere-surface exchange of CO2 over sea ice
    Sorensen, L. L.
    Jensen, B.
    Glud, R. N.
    McGinnis, D. F.
    Sejr, M. K.
    Sievers, J.
    Sogaard, D. H.
    Tison, J. -L.
    Rysgaard, S.
    CRYOSPHERE, 2014, 8 (03) : 853 - 866
  • [7] Abiotic CO2 exchange between soil and atmosphere and its response to temperature
    Liu, Jiabin
    Feng, Wei
    Zhang, Yuqing
    Jia, Xin
    Wu, Bin
    Qin, Shugao
    Fa, Keyu
    Lai, Zongrui
    ENVIRONMENTAL EARTH SCIENCES, 2015, 73 (05) : 2463 - 2471
  • [8] Southern Ocean CO2 sink: The contribution of the sea ice
    Delille, Bruno
    Vancoppenolle, Martin
    Geilfus, Nicolas-Xavier
    Tilbrook, Bronte
    Lannuzel, Delphine
    Schoemann, Veronique
    Becquevort, Sylvie
    Carnat, Gauthier
    Delille, Daniel
    Lancelot, Christiane
    Chou, Lei
    Dieckmann, Gerhard S.
    Tison, Jean-Louis
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (09) : 6340 - 6355
  • [9] Early Wintertime CO2 Uptake in the Western Arctic Ocean
    Murata, A.
    Inoue, J.
    Nishino, S.
    Yasunaka, S.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2022, 127 (08)
  • [10] Atmosphere-Ocean CO2 Exchange Across the Last Deglaciation From the Boron Isotope Proxy
    Shao, Jun
    Stott, Lowell D.
    Gray, William R.
    Greenop, Rosanna
    Pecher, Ingo
    Neil, Helen L.
    Coffin, Richard B.
    Davy, Bryan
    Rae, James W. B.
    PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY, 2019, 34 (10) : 1650 - 1670