Vibration tailoring of heterogeneous beams and annular plates

被引:2
作者
Elishakoff, I [1 ]
Chandra, D [1 ]
机构
[1] Florida Atlantic Univ, Dept Mech Engn, Boca Raton, FL 33431 USA
关键词
D O I
10.1016/j.jsv.2005.06.040
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this study, it is demonstrated that clamped-clamped heterogeneous Bernoulli-Euler beams and the Kirchhoff-Love annular plate that is clamped along both inner and outer perimeters possess the common fundamental mode shape that is a fourth-order polynomial. This remarkable finding leads to the possibility of vibration tailoring, namely, the analytical design of annular heterogeneous plate with a pre-specified natural frequency. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1255 / 1260
页数:6
相关论文
共 13 条
[1]   AXISYMMETRIC VIBRATIONS OF A THIN CIRCULAR PLATE HAVING PARABOLIC THICKNESS VARIATION [J].
BARAKAT, R ;
BAUMANN, E .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1968, 44 (02) :641-&
[2]  
Cailò I, 2004, MECH BASED DES STRUC, V32, P401, DOI [10.1081/LMDB-200028002, 10.1081/LMBD-200028002]
[3]  
Elishakoff I., 2005, EIGENVALUES INHOMOGE
[4]   AXISYMMETRICAL ISOSPECTRAL ANNULAR PLATES AND MEMBRANES [J].
GOTTLIEB, HPW .
IMA JOURNAL OF APPLIED MATHEMATICS, 1992, 49 (02) :185-192
[5]  
Kirkhope J., 1972, International Journal for Numerical Methods in Engineering, V4, P181, DOI 10.1002/nme.1620040205
[6]  
Leissa AW, 1969, NASA, P1
[7]  
LEISSA AW, 1978, SHOCK VIBR DIG, V10, P21, DOI DOI 10.1177/058310247801001204
[8]  
LEISSA AW, 1978, SHOCK VIBRATION DIGE, V13, P19
[9]  
LEISSA AW, 1987, SHOCK VIBRATION DI 2, V19, P10, DOI DOI 10.1177/058310248701900304
[10]   EXACT, CLOSED FORM, SOLUTION FOR THE FLEXURAL VIBRATION OF A THIN ANNULAR PLATE HAVING A PARABOLIC THICKNESS VARIATION [J].
LENOX, TA ;
CONWAY, HD .
JOURNAL OF SOUND AND VIBRATION, 1980, 68 (02) :231-239