Toward the ergodicity of p-adic 1-Lipschitz functions represented by the van der Put series

被引:24
作者
Jeong, Sangtae [1 ]
机构
[1] Inha Univ, Dept Math, Inchon 402751, South Korea
基金
新加坡国家研究基金会;
关键词
Ergodic; Measure-preserving; 1-Lipschitz; Van der Put basis; Mahler basis;
D O I
10.1016/j.jnt.2013.02.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Yurova (2010) [17] and Anashin et al. (2011 [3], preprint [4]) characterize the ergodicity of a 1-Lipschitz function on Z(2) in terms of the van der Put expansion. Motivated by their recent mirk, we provide the sufficient conditions for the ergodicity of such a function defined on a more general setting Z(p). In addition, we provide alternative proofs of two criteria (because of Anashin et al., 2011 [3], preprint [4] and Yurova, 2010 [17]) for an ergodic 1-Lipschitz function on Z(2), represented by both the Mahler basis and the van der Put basis. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2874 / 2891
页数:18
相关论文
共 17 条
[1]   UNIFORMLY DISTRIBUTED SEQUENCES OF P-ADIC INTEGERS [J].
ANACHIN, VS .
MATHEMATICAL NOTES, 1994, 55 (1-2) :109-133
[2]  
Anashin V, 2009, DEGRUYTER EXPOS MATH, V49, P1, DOI 10.1515/9783110203011
[3]  
Anashin V., 2011, DOKL MATH, V83, P1
[4]  
Anashin V., ARXIV11113093V1
[5]  
[Anonymous], 1997, ENCY MATH APPL
[6]   Minimal polynomial dynamics on the set of 3-adic integers [J].
Durand, Fabien ;
Paccaut, Frederic .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :302-314
[7]   Characterization of ergodicity of T-adic maps on F2[T] using digit derivatives basis [J].
Jeong, Sangtae .
JOURNAL OF NUMBER THEORY, 2013, 133 (06) :1846-1863
[8]   Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis [J].
Khrennikov, Andrei ;
Yurova, Ekaterina .
JOURNAL OF NUMBER THEORY, 2013, 133 (02) :484-491
[9]  
Klimov A, 2004, LECT NOTES COMPUT SC, V3006, P248
[10]  
Larin M. V., 2002, DISCRETE MATH APPL, V12, P127