Substrate surface corrugation effects on the electronic transport in graphene nanoribbons

被引:17
|
作者
Touski, Shoeib Babaee [1 ]
Pourfath, Mahdi [1 ,2 ]
机构
[1] Univ Tehran, Sch Elect & Comp Engn, Tehran, Iran
[2] TU Wien, Inst Microelect, A-1040 Vienna, Austria
关键词
Substrates; -; Graphene; Nanoribbons;
D O I
10.1063/1.4824362
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, the electronic transport in armchair graphene nanoribbons in the presence of surface corrugation is studied. The non-equilibrium Green's function along with tight-binding model for describing the electronic band structure is employed to investigate the electronic properties of graphene nanoribbons. The effects of surface corrugation parameters, such as corrugation amplitude and correlation length, on the electronic properties of the graphene nanoribbons are studied. The mean free path of carriers is extracted and its dependency on the corrugation amplitude and correlation length is investigated. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Electronic and Transport Properties of Graphene Nanoribbons
    Hou, Zhufeng
    Yee, Marcus
    2007 7TH IEEE CONFERENCE ON NANOTECHNOLOGY, VOL 1-3, 2007, : 558 - 561
  • [2] Comparison of the electronic transport properties of metallic graphene and silicene nanoribbons
    Yamacli, Serhan
    JOURNAL OF NANOPARTICLE RESEARCH, 2014, 16 (08)
  • [3] Comparison of the electronic transport properties of metallic graphene and silicene nanoribbons
    Serhan Yamacli
    Journal of Nanoparticle Research, 2014, 16
  • [4] Electronic Transport of Graphene Nanoribbons: Effect of Edges and Geometry
    Wakabayashi, Katsunori
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 (ICCMSE 2009), 2012, 1504 : 907 - 911
  • [5] Electronic transport properties of nanoribbons of graphene and ψ-graphene -based lactate nanobiosensor
    Khatir, Nadia Mahmoudi
    Ahmadi, Aidin
    Taghizade, Narges
    Khameneh, Samane Motevali
    Faghihnasiri, Mahdi
    SUPERLATTICES AND MICROSTRUCTURES, 2020, 145
  • [6] Tunable band structure effects on ballistic transport in graphene nanoribbons
    Roslyak, O.
    Gumbs, Godfrey
    Huang, Danhong
    PHYSICS LETTERS A, 2010, 374 (39) : 4061 - 4064
  • [7] Electronic transport through hybrid armchair graphane/graphene nanoribbons
    Liu, W.
    Meng, F. H.
    Zhao, J. H.
    Jiang, X. H.
    PHYSICA B-CONDENSED MATTER, 2019, 554 : 144 - 147
  • [8] Electronic Properties of Graphene Nanoribbons With Defects
    Rallis, Konstantinos
    Dimitrakis, Panagiotis
    Karafyllidis, Ioannis G.
    Rubio, Antonio
    Sirakoulis, Georgios Ch
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2021, 20 : 151 - 160
  • [9] Nonlocal Effects on Surface Plasmon Polariton Propagation in Graphene Nanoribbons
    Lovat, Giampiero
    Araneo, Rodolfo
    Burghignoli, Paolo
    Hanson, George W.
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2015, 5 (06) : 941 - 950
  • [10] Vacancy clustering effect on the electronic and transport properties of bilayer graphene nanoribbons
    Miranda, L. P.
    Da Costa, D. R.
    Peeters, F. M.
    Costa Filho, R. N.
    NANOTECHNOLOGY, 2023, 34 (05)