Transcriptome-wide measurement of ribosomal occupancy by ribosome profiling

被引:32
作者
Aeschimann, Florian [1 ]
Xiong, Jieyi [2 ]
Arnold, Andreas [1 ]
Dieterich, Christoph [2 ]
Grosshans, Helge [1 ]
机构
[1] Friedrich Miescher Inst Biomed Res, CH-4058 Basel, Switzerland
[2] Max Planck Inst Biol Ageing, D-50931 Cologne, Germany
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
Ribosome profiling; Translation; Translational control; Post-transcriptional regulation; Polysome profiling; Caenorhabditis elegans; OPEN READING FRAMES; MESSENGER-RNA; IN-VIVO; TRANSLATION ELONGATION; MAMMALIAN-CELLS; NONCODING RNAS; REVEALS; IDENTIFICATION; STRESS; BIASES;
D O I
10.1016/j.ymeth.2015.06.013
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gene expression profiling provides a tool to analyze the internal states of cells or organisms, and their responses to perturbations. While global measurements of mRNA levels have thus been widely used for many years, it is only through the recent development of the ribosome profiling technique that an analogous examination of global mRNA translation programs has become possible. Ribosome profiling reveals which RNAs are being translated to what extent and where the translated open reading frames are located. In addition, different modes of translation regulation can be distinguished and characterized. Here, we present an optimized, step-by-step protocol for ribosome profiling. Although established in Caenorhabditis elegans, our protocol and optimization approaches should be equally usable for other model organisms or cell culture with little adaptation. Next to providing a protocol, we compare two different methods for isolation of single ribosomes and two different library preparations, and describe strategies to optimize the RNase digest and to reduce ribosomal RNA contamination in the libraries. Moreover, we discuss bioinformatic strategies to evaluate the quality of the data and explain how the data can be analyzed for different applications. In sum, this article seeks to facilitate the understanding, execution, and optimization of ribosome profiling experiments. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 74 条
[1]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[2]   A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance [J].
Anderson, Douglas M. ;
Anderson, Kelly M. ;
Chang, Chi-Lun ;
Makarewich, Catherine A. ;
Nelson, Benjamin R. ;
McAnally, John R. ;
Kasaragod, Prasad ;
Shelton, John M. ;
Liou, Jen ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
CELL, 2015, 160 (04) :595-606
[3]  
[Anonymous], J BIOL CHEM
[4]   Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae [J].
Arava, Y ;
Wang, YL ;
Storey, JD ;
Liu, CL ;
Brown, PO ;
Herschlag, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3889-3894
[5]   Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation [J].
Artieri, Carlo G. ;
Fraser, Hunter B. .
GENOME RESEARCH, 2014, 24 (12) :2011-2021
[6]   Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation [J].
Bazzini, Ariel A. ;
Johnstone, Timothy G. ;
Christiano, Romain ;
Mackowiak, Sebastian D. ;
Obermayer, Benedikt ;
Fleming, Elizabeth S. ;
Vejnar, Charles E. ;
Lee, Miler T. ;
Rajewsky, Nikolaus ;
Walther, Tobias C. ;
Giraldez, Antonio J. .
EMBO JOURNAL, 2014, 33 (09) :981-993
[7]   Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish [J].
Bazzini, Ariel A. ;
Lee, Miler T. ;
Giraldez, Antonio J. .
SCIENCE, 2012, 336 (6078) :233-237
[8]   High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling [J].
Brar, Gloria A. ;
Yassour, Moran ;
Friedman, Nir ;
Regev, Aviv ;
Ingolia, Nicholas T. ;
Weissman, Jonathan S. .
SCIENCE, 2012, 335 (6068) :552-557
[9]   A Bicistronic MAVS Transcript Highlights a Class of Truncated Variants in Antiviral Immunity [J].
Brubaker, Sky W. ;
Gauthier, Anna E. ;
Mills, Eric W. ;
Ingolia, Nicholas T. ;
Kagan, Jonathan C. .
CELL, 2014, 156 (04) :800-811
[10]   Positively Charged Residues Are the Major Determinants of Ribosomal Velocity [J].
Charneski, Catherine A. ;
Hurst, Laurence D. .
PLOS BIOLOGY, 2013, 11 (03)