Reactive molecular dynamics simulation on the structure characteristics and tensile properties of calcium silicate hydrate at various temperatures and strain rates

被引:19
|
作者
Zhou, Jikai [1 ]
Liang, Yuanzhi [1 ]
机构
[1] Hohai Univ, Coll Civil & Transportat Engn, Nanjing, Peoples R China
关键词
Calcium silicate hydrate(C-S-H); strain rate sensitivity; temperature; mechanical properties; reactive molecular dynamics; C-S-H; PORTLAND-CEMENT PASTE; MECHANICAL-PROPERTIES; ELEVATED-TEMPERATURES; FORCE-FIELD; CONCRETE; BEHAVIOR; DEFORMATION; STRENGTH; DEHYDRATION;
D O I
10.1080/08927022.2020.1807543
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reactive molecular dynamics simulations are employed to explore the structural characteristics and tensile properties of calcium silicate hydrate (C-S-H) subjected to temperatures from 50 K to 700 K and strain rates from 0.008ps(-1)to 0.8ps(-1). The rising temperatures destroy the H-bond network, leading to obvious enlargement along the interlayer direction and the layered structural characteristics convert into staggered characteristics. The mechanical properties linearly decrease with an increase in temperatures and show a nonlinearly decrease with the higher strain rates. Furthermore, the strain rate has a stronger influence on the tensile strength at a higher temperature than that at a lower temperature. The effect of strain rates at various temperatures have the same pattern, which is consistent with the experiment results. The results in this paper provide the molecular-level views about the structure evolutions and mechanical behaviours of cement-based materials at low temperatures to high temperatures environments and different strain rates.
引用
收藏
页码:1181 / 1190
页数:10
相关论文
共 50 条
  • [41] The effects of calcium content on molecular structure and mechanical properties of sodium aluminosilicate hydrate (NASH) gels by molecular dynamics simulation
    Wang, Rui
    Wang, Jingsong
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2021, 551
  • [42] Structure, dynamics and transport behavior of migrating corrosion inhibitors on the surface of calcium silicate hydrate: a molecular dynamics study
    Sun, Ming
    Yang, Qingrui
    Zhang, Yue
    Wang, Pan
    Hou, Dongshuai
    Liu, Qingfeng
    Zhang, Jinrui
    Zhang, Jigang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (05) : 3267 - 3280
  • [43] Influence of water on the tensile properties of amorphous silica: a reactive molecular dynamics simulation
    Zhang Yun-An
    Tao Jun-Yong
    Chen Xun
    Liu Bin
    ACTA PHYSICA SINICA, 2013, 62 (24) : 246801
  • [44] A Molecular Dynamics Study on the Structure, Interfaces, Mechanical Properties, and Mechanisms of a Calcium Silicate Hydrate/2D-Silica Nanocomposite
    Zhou, Yang
    Zheng, Haojie
    Qiu, Yuwen
    Zou, Xixi
    Huang, Jiale
    FRONTIERS IN MATERIALS, 2020, 7
  • [45] Coarse-grained molecular dynamics study on submicron structuring of calcium silicate hydrate with enhanced tensile modulus and strength
    Yu, Zechuan
    Zhuo, Jingbo
    Qin, Renyuan
    Liu, Tiejun
    Zhou, Ao
    Tang, Jinhui
    JOURNAL OF BUILDING ENGINEERING, 2024, 82
  • [46] TENSILE PROPERTIES OF FINE-GRAINED 7475 ALUMINUM-ALLOY AT VARIOUS TEMPERATURES AND STRAIN RATES
    TAKUDA, H
    KIKUCHI, S
    HATTA, N
    JOURNAL OF MATERIALS SCIENCE, 1991, 26 (17) : 4643 - 4647
  • [47] A Molecular Dynamics Study on the Structure Characteristic of Calcium Silicate Hydrate (C-S-H) Gels
    Li, Kai
    Shui, Zhonghe
    Dai, Wei
    COMPUTER SCIENCE FOR ENVIRONMENTAL ENGINEERING AND ECOINFORMATICS, PT 1, 2011, 158 : 33 - 39
  • [48] Molecular Dynamics Simulation of Calcium-Silicate-Hydrate for Nano-Engineered Cement Composites-A Review
    Cho, Byoung Hooi
    Chung, Wonseok
    Nam, Boo Hyun
    NANOMATERIALS, 2020, 10 (11) : 1 - 25
  • [49] Dynamic mechanical behaviors of calcium silicate hydrate under shock compression loading using molecular dynamics simulation
    Lin, Weihui
    Zhang, Chao
    Fu, Jia
    Xin, Hao
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2018, 500 : 482 - 486
  • [50] Molecular dynamics simulation study on interfacial shear strength between calcium-silicate-hydrate and polymer fibers
    Wang, Pan
    Qiao, Gang
    Zhang, Yue
    Hou, Dongshuai
    Zhang, Jinrui
    Wang, Muhan
    Wang, Xinpeng
    Hu, Xiaoxia
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 257