STIFDB2: An Updated Version of Plant Stress-Responsive TranscrIption Factor DataBase with Additional Stress Signals, Stress-Responsive Transcription Factor Binding Sites and Stress-Responsive Genes in Arabidopsis and Rice

被引:81
|
作者
Naika, Mahantesha [1 ,2 ]
Shameer, Khader [1 ]
Mathew, Oommen K. [1 ]
Gowda, Ramanjini [2 ]
Sowdhamini, Ramanathan [1 ]
机构
[1] Natl Ctr Biol Sci TIFR, Bangalore 560065, Karnataka, India
[2] Univ Agr Sci, Dept Plant Biotechnol, Bangalore 560065, Karnataka, India
关键词
Abiotic and biotic stress; Biocuration; Biological data mining; Stress response; Transcriptional regulatory cascade; ORYZA-SATIVA L; ABIOTIC STRESS; ABSCISIC-ACID; COLD STRESS; INFORMATION RESOURCE; FUNCTIONAL-ANALYSIS; CROSS-TALK; DROUGHT; SALT; EXPRESSION;
D O I
10.1093/pcp/pcs185
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Understanding the principles of abiotic and biotic stress responses, tolerance and adaptation remains important in plant physiology research to develop better varieties of crop plants. Better understanding of plant stress response mechanisms and application of knowledge derived from integrated experimental and bioinformatics approaches are gaining importance. Earlier, we showed that compiling a database of stress-responsive transcription factors and their corresponding target binding sites in the form of Hidden Markov models at promoter, untranslated and upstream regions of stress-up-regulated genes from expression analysis can help in elucidating various aspects of the stress response in Arabidopsis. In addition to the extensive content in the first version, STIFDB2 is now updated with 15 stress signals, 31 transcription factors and 5,984 stress-responsive genes from three species (Arabidopsis thaliana, Oryza sativa subsp. japonica and Oryza sativa subsp. indica). We have employed an integrated biocuration and genomic data mining approach to characterize the data set of transcription factors and consensus binding sites from literature mining and stress-responsive genes from the Gene Expression Omnibus. STIFDB2 currently has 38,798 associations of stress signals, stress-responsive genes and transcription factor binding sites predicted using the Stress-responsive Transcription Factor (STIF) algorithm, along with various functional annotation data. As a unique plant stress regulatory genomics data platform, STIFDB2 can be utilized for targeted as well as high-throughput experimental and computational studies to unravel principles of the stress regulome in dicots and gramineae. STIFDB2 is available from the URL: ext-link-type="uri" xlink:href="http://caps.ncbs.res.in/stifdb2" xmlns:xlink="http://www.w3.org/1999/xlink">http://caps.ncbs.res.in/stifdb2.
引用
收藏
页码:E8 / +
页数:15
相关论文
共 50 条
  • [21] An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes
    Yanez, Monica
    Caceres, Susan
    Orellana, Sandra
    Bastias, Adriana
    Verdugo, Isabel
    Ruiz-Lara, Simon
    Casaretto, Jose A.
    PLANT CELL REPORTS, 2009, 28 (10) : 1497 - 1507
  • [22] Biotic Stress-Responsive Rice Proteome: An Overview
    Yiming Wang
    Sang Gon Kim
    Sun Tae Kim
    Ganesh Kumar Agrawal
    Randeep Rakwal
    Kyu Young Kang
    Journal of Plant Biology, 2011, 54 : 219 - 226
  • [23] Stress-responsive transcription factors train stem cells to remember
    Nguyen, Tram Mai
    Aragona, Mariaceleste
    CELL STEM CELL, 2021, 28 (10) : 1679 - 1680
  • [24] Biotic Stress-Responsive Rice Proteome: An Overview
    Wang, Yiming
    Kim, Sang Gon
    Kim, Sun Tae
    Agrawal, Ganesh Kumar
    Rakwal, Randeep
    Kang, Kyu Young
    JOURNAL OF PLANT BIOLOGY, 2011, 54 (04) : 219 - 226
  • [25] The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice
    Hironori Takasaki
    Kyonoshin Maruyama
    Satoshi Kidokoro
    Yusuke Ito
    Yasunari Fujita
    Kazuo Shinozaki
    Kazuko Yamaguchi-Shinozaki
    Kazuo Nakashima
    Molecular Genetics and Genomics, 2010, 284 : 173 - 183
  • [26] The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice
    Takasaki, Hironori
    Maruyama, Kyonoshin
    Kidokoro, Satoshi
    Ito, Yusuke
    Fujita, Yasunari
    Shinozaki, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    Nakashima, Kazuo
    MOLECULAR GENETICS AND GENOMICS, 2010, 284 (03) : 173 - 183
  • [27] A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice
    Yang, Shiqin
    Xu, Kai
    Chen, Shoujun
    Li, Tianfei
    Xia, Hui
    Chen, Liang
    Liu, Hongyan
    Luo, Lijun
    BMC PLANT BIOLOGY, 2019, 19 (1)
  • [28] A chickpea stress-responsive NAC transcription factor, CarNAC5, confers enhanced tolerance to drought stress in transgenic Arabidopsis
    Xingwang Yu
    Yanmin Liu
    Shuang Wang
    Yuan Tao
    Zhankui Wang
    Abudoukeyumu Mijiti
    Ze Wang
    Hua Zhang
    Hao Ma
    Plant Growth Regulation, 2016, 79 : 187 - 197
  • [29] Integrating omics analysis of salt stress-responsive genes in rice
    Seo-Woo Kim
    Hee-Jeong Jeong
    Ki-Hong Jung
    Genes & Genomics, 2015, 37 : 645 - 655
  • [30] A chickpea stress-responsive NAC transcription factor, CarNAC5, confers enhanced tolerance to drought stress in transgenic Arabidopsis
    Yu, Xingwang
    Liu, Yanmin
    Wang, Shuang
    Tao, Yuan
    Wang, Zhankui
    Mijiti, Abudoukeyumu
    Wang, Ze
    Zhang, Hua
    Ma, Hao
    PLANT GROWTH REGULATION, 2016, 79 (02) : 187 - 197