Numerical analysis of finite dimensional approximations of Kohn-Sham models

被引:39
作者
Chen, Huajie [1 ]
Gong, Xingao [2 ]
He, Lianhua [1 ]
Yang, Zhang [1 ]
Zhou, Aihui [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
Convergence; Density functional theory; Error estimate; Kohn-Sham equation; Nonlinear eigenvalue problem; GROUND-STATE SOLUTION; ELECTRONIC-STRUCTURE; MINIMIZATION;
D O I
10.1007/s10444-011-9235-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study finite dimensional approximations of Kohn-Sham models, which are widely used in electronic structure calculations. We prove the convergence of the finite dimensional approximations and derive the a priori error estimates for ground state energies and solutions. We also provide numerical simulations for several molecular systems that support our theory.
引用
收藏
页码:225 / 256
页数:32
相关论文
共 37 条
[1]  
Agmon S., 1981, LECT EXP DEC SOL 2 O
[2]   Existence of minimizers for Kohn-Sham models in quantum chemistry [J].
Anantharaman, Arnaud ;
Cances, Eric .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06) :2425-2455
[3]  
[Anonymous], 2007, SPECTRAL METHODS
[4]  
[Anonymous], 1993, THESIS ECOLE POLYTEC
[5]   Multiresolution analysis of electronic structure: Semicardinal and wavelet bases [J].
Arias, TA .
REVIEWS OF MODERN PHYSICS, 1999, 71 (01) :267-311
[6]   Analysis of finite dimensional approximations to a class of partial differential equations [J].
Bao, G ;
Zhou, AH .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (17) :2055-2066
[7]  
CANCES E, 2010, ARXIV10031612
[8]   Numerical Analysis of Nonlinear Eigenvalue Problems [J].
Cances, Eric ;
Chakir, Rachida ;
Maday, Yvon .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) :90-117
[9]   Finite element approximations of nonlinear eigenvalue problems in quantum physics [J].
Chen, Huajie ;
He, Lianhua ;
Zhou, Aihui .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (21-22) :1846-1865
[10]   Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model [J].
Chen, Huajie ;
Gong, Xingao ;
Zhou, Aihui .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (14) :1723-1742