Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores

被引:47
|
作者
Yoneda, Yusuke [1 ]
Noji, Tomoyasu [2 ,3 ]
Katayama, Tetsuro [4 ,5 ]
Mizutani, Naoto [2 ]
Komori, Daisuke [2 ]
Nango, Mamoru [2 ,3 ]
Miyasaka, Hiroshi [1 ]
Itoh, Shigeru [6 ]
Nagasawa, Yutaka [1 ,5 ]
Dewa, Takehisa [2 ,5 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
[2] Nagoya Inst Technol, Grad Sch Engn, Dept Frontier Mat, Showa Ku, Nagoya, Aichi 4668555, Japan
[3] Osaka City Univ, OCU Adv Res Inst Nat Sci & Technol OCARINA, Sumiyoshi Ku, Osaka 5588585, Japan
[4] Osaka Univ, Inst NanoSci Design, Toyonaka, Osaka 5608531, Japan
[5] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[6] Nagoya Univ, Ctr Gene Res, Chikusa Ku, Nagoya, Aichi 4648602, Japan
基金
日本科学技术振兴机构;
关键词
BACTERIA RHODOBACTER-SPHAEROIDES; PURPLE BACTERIA; RHODOPSEUDOMONAS-ACIDOPHILA; CRYSTAL-STRUCTURE; ANTENNA COMPLEX; ELECTRONIC EXCITATION; REACTION CENTERS; EXCITED-STATE; DYNAMICS; BACTERIOCHLOROPHYLL;
D O I
10.1021/jacs.5b08508
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Introducing appropriate artificial components into natural biological systems could enrich the original functionality. To expand the available wavelength range of photosynthetic bacterial light-harvesting complex 2 (LH2 from Rhodopseudomonas acidophila 10050), artificial fluorescent dye (Alexa Fluor 647: A647) was covalently attached to N- and C-terminal Lys residues in LH2 alpha-polypeptides with a molar ratio of A647/LH2 similar or equal to 9/1. Fluorescence and transient absorption spectroscopies revealed that intracomplex energy transfer from A647 to intrinsic chromophores of LH2 (B850) occurs in a multiexponential manner, with time constants varying from 440 fs to 23 Ps through direct and B800-mediated indirect pathways. Kinetic analyses suggested that B800 chromophores mediate faster energy transfer, and the mechanism was interpretable in terms of Forster theory. This study demonstrates that a simple attachment of external chromophores with a flexible linkage can enhance the light harvesting activity of LH2 without affecting inherent functions of energy transfer, and can achieve energy transfer in the subpicosecond range. Addition of external chromophores, thus, represents a useful methodology for construction of advanced hybrid light-harvesting systems that afford solar energy in the broad spectrum.
引用
收藏
页码:13121 / 13129
页数:9
相关论文
共 50 条
  • [41] Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum
    Niedzwiedzki, Dariusz M.
    Bina, David
    Picken, Nichola
    Honkanen, Suvi
    Blankenship, Robert E.
    Holten, Dewey
    Cogdell, Richard J.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2012, 1817 (09): : 1576 - 1587
  • [42] A quantum mechanical analysis of the light-harvesting complex 2 (LH2) from purple photosynthetic bacteria: Insights into the electrostatic effects of transmembrane helices
    Pichierri, Fabio
    BIOSYSTEMS, 2011, 103 (02) : 132 - 137
  • [43] Light-Harvesting Polymers: Ultrafast Energy Transfer in Polystyrene-Based Arrays of π-Conjugated Chromophores
    Chen, Zhuo
    Grumstrup, Erik M.
    Gilligan, Alexander T.
    Papanikolas, John M.
    Schanze, Kirk S.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (01): : 372 - 378
  • [44] Influence of LDAO on the Conformation and Release of Bacteriochlorophyll of Peripheral Light-Harvesting Complex (LH2) from Rhodobacter Azotoformans
    Zhao Gen-gui
    Dong Yan-min
    Yang Su-ping
    Jiao Nian-zhi
    Qu Yin-bo
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30 (10) : 2807 - 2811
  • [45] Static and Dynamic Disorder in Bacterial Light-Harvesting Complex LH2: A 2DES Simulation Study
    Rancova, Olga
    Abramavicius, Darius
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (27): : 7533 - 7540
  • [46] Manifestation of protein conformations in the B850 absorption band of light-harvesting complex LH2
    Meldaikis, Julius
    Zerlauskiene, Oksana
    Abramavicius, Darius
    Valkunas, Leonas
    CHEMICAL PHYSICS, 2013, 423 : 9 - 14
  • [47] THE RELATIONSHIP BETWEEN CAROTENOID BIOSYNTHESIS AND THE ASSEMBLY OF THE LIGHT-HARVESTING LH2 COMPLEX IN RHODOBACTER-SPHAEROIDES
    LANG, HP
    HUNTER, CN
    BIOCHEMICAL JOURNAL, 1994, 298 : 197 - 205
  • [48] Structural Stability of Light-harvesting Protein LH2 Adsorbed on Mesoporous Silica Supports
    Yuuta Shibuya
    Tetsuji Itoh
    Shun-ichi Matsuura
    Akira Yamaguchi
    Analytical Sciences, 2015, 31 : 1069 - 1074
  • [49] Assembly of the LH2 Light-Harvesting Complexes of Thiorhodospira sibirica with Different Carotenoid Levels
    Bolshakov, M. A.
    Ashikhmin, A. A.
    Makhneva, Z. K.
    Moskalenko, A. A.
    MICROBIOLOGY, 2020, 89 (03) : 278 - 286
  • [50] Assembly of the LH2 Light-Harvesting Complexes of Thiorhodospira sibirica with Different Carotenoid Levels
    M. A. Bolshakov
    A. A. Ashikhmin
    Z. K. Makhneva
    A. A. Moskalenko
    Microbiology, 2020, 89 : 278 - 286