Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores

被引:46
|
作者
Yoneda, Yusuke [1 ]
Noji, Tomoyasu [2 ,3 ]
Katayama, Tetsuro [4 ,5 ]
Mizutani, Naoto [2 ]
Komori, Daisuke [2 ]
Nango, Mamoru [2 ,3 ]
Miyasaka, Hiroshi [1 ]
Itoh, Shigeru [6 ]
Nagasawa, Yutaka [1 ,5 ]
Dewa, Takehisa [2 ,5 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
[2] Nagoya Inst Technol, Grad Sch Engn, Dept Frontier Mat, Showa Ku, Nagoya, Aichi 4668555, Japan
[3] Osaka City Univ, OCU Adv Res Inst Nat Sci & Technol OCARINA, Sumiyoshi Ku, Osaka 5588585, Japan
[4] Osaka Univ, Inst NanoSci Design, Toyonaka, Osaka 5608531, Japan
[5] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[6] Nagoya Univ, Ctr Gene Res, Chikusa Ku, Nagoya, Aichi 4648602, Japan
基金
日本科学技术振兴机构;
关键词
BACTERIA RHODOBACTER-SPHAEROIDES; PURPLE BACTERIA; RHODOPSEUDOMONAS-ACIDOPHILA; CRYSTAL-STRUCTURE; ANTENNA COMPLEX; ELECTRONIC EXCITATION; REACTION CENTERS; EXCITED-STATE; DYNAMICS; BACTERIOCHLOROPHYLL;
D O I
10.1021/jacs.5b08508
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Introducing appropriate artificial components into natural biological systems could enrich the original functionality. To expand the available wavelength range of photosynthetic bacterial light-harvesting complex 2 (LH2 from Rhodopseudomonas acidophila 10050), artificial fluorescent dye (Alexa Fluor 647: A647) was covalently attached to N- and C-terminal Lys residues in LH2 alpha-polypeptides with a molar ratio of A647/LH2 similar or equal to 9/1. Fluorescence and transient absorption spectroscopies revealed that intracomplex energy transfer from A647 to intrinsic chromophores of LH2 (B850) occurs in a multiexponential manner, with time constants varying from 440 fs to 23 Ps through direct and B800-mediated indirect pathways. Kinetic analyses suggested that B800 chromophores mediate faster energy transfer, and the mechanism was interpretable in terms of Forster theory. This study demonstrates that a simple attachment of external chromophores with a flexible linkage can enhance the light harvesting activity of LH2 without affecting inherent functions of energy transfer, and can achieve energy transfer in the subpicosecond range. Addition of external chromophores, thus, represents a useful methodology for construction of advanced hybrid light-harvesting systems that afford solar energy in the broad spectrum.
引用
收藏
页码:13121 / 13129
页数:9
相关论文
共 50 条
  • [31] Optimal thermal bath for robust excitation energy transfer in disordered light-harvesting complex 2 of purple bacteria
    Cleary, Liam
    Cao, Jianshu
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [32] Ab Inito Study on Triplet Excitation Energy Transfer in Photosynthetic Light-Harvesting Complexes
    You, Zhi-Qiang
    Hsu, Chao-Ping
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (16) : 4092 - 4100
  • [33] A Supramolecular Artificial Light-Harvesting System with Excitation Energy and Electron Transfer
    Teng, Kun-Xu
    An, Zhi-Peng
    Niu, Li-Ya
    Yang, Qing-Zheng
    ACS MATERIALS LETTERS, 2023, 6 (01): : 290 - 297
  • [34] Carotenoids Do Not Protect Bacteriochlorophylls in Isolated Light-Harvesting LH2 Complexes of Photosynthetic Bacteria from Destructive Interactions with Singlet Oxygen
    Makhneva, Zoya K.
    Bolshakov, Maksim A.
    Moskalenko, Andrey A.
    MOLECULES, 2021, 26 (17):
  • [35] The PucC protein of Rhodobacter capsulatus mitigates an inhibitory effect of light-harvesting 2 α and β proteins on light-harvesting complex 1
    Paul R. Jaschke
    Heidi N. LeBlanc
    Andrew S. Lang
    J. Thomas Beatty
    Photosynthesis Research, 2008, 95 : 279 - 284
  • [36] The PucC protein of Rhodobacter capsulatus mitigates an inhibitory effect of light-harvesting 2 α and β proteins on light-harvesting complex 1
    Jaschke, Paul R.
    LeBlanc, Heidi N.
    Lang, Andrew S.
    Beatty, J. Thomas
    PHOTOSYNTHESIS RESEARCH, 2008, 95 (2-3) : 279 - 284
  • [37] Thermal Adaptability of the Light-Harvesting Complex 2 from Thermochromatium tepidum: Temperature-Dependent Excitation Transfer Dynamics
    Shi, Ying
    Zhao, Ning-Jiu
    Wang, Peng
    Fu, Li-Min
    Yu, Long-Jiang
    Zhang, Jian-Ping
    Wang-Otomo, Zheng-Yu
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (47) : 14871 - 14879
  • [38] Vibronic mixing enables ultrafast energy flow in light-harvesting complex II
    Arsenault, Eric A.
    Yoneda, Yusuke
    Iwai, Masakazu
    Niyogi, Krishna K.
    Fleming, Graham R.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [39] Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria
    Klenina, I. B.
    Makhneva, Z. K.
    Moskalenko, A. A.
    Gudkov, N. D.
    Bolshakov, M. A.
    Pavlova, E. A.
    Proskuryakov, I. I.
    BIOCHEMISTRY-MOSCOW, 2014, 79 (03) : 235 - 241
  • [40] Forster Energy Transfer Theory as Reflected in the Structures of Photosynthetic Light-Harvesting Systems
    Sener, Melih
    Struempfer, Johan
    Hsin, Jen
    Chandler, Danielle
    Scheuring, Simon
    Hunter, C. Neil
    Schulten, Klaus
    CHEMPHYSCHEM, 2011, 12 (03) : 518 - 531