Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores

被引:46
|
作者
Yoneda, Yusuke [1 ]
Noji, Tomoyasu [2 ,3 ]
Katayama, Tetsuro [4 ,5 ]
Mizutani, Naoto [2 ]
Komori, Daisuke [2 ]
Nango, Mamoru [2 ,3 ]
Miyasaka, Hiroshi [1 ]
Itoh, Shigeru [6 ]
Nagasawa, Yutaka [1 ,5 ]
Dewa, Takehisa [2 ,5 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
[2] Nagoya Inst Technol, Grad Sch Engn, Dept Frontier Mat, Showa Ku, Nagoya, Aichi 4668555, Japan
[3] Osaka City Univ, OCU Adv Res Inst Nat Sci & Technol OCARINA, Sumiyoshi Ku, Osaka 5588585, Japan
[4] Osaka Univ, Inst NanoSci Design, Toyonaka, Osaka 5608531, Japan
[5] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[6] Nagoya Univ, Ctr Gene Res, Chikusa Ku, Nagoya, Aichi 4648602, Japan
基金
日本科学技术振兴机构;
关键词
BACTERIA RHODOBACTER-SPHAEROIDES; PURPLE BACTERIA; RHODOPSEUDOMONAS-ACIDOPHILA; CRYSTAL-STRUCTURE; ANTENNA COMPLEX; ELECTRONIC EXCITATION; REACTION CENTERS; EXCITED-STATE; DYNAMICS; BACTERIOCHLOROPHYLL;
D O I
10.1021/jacs.5b08508
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Introducing appropriate artificial components into natural biological systems could enrich the original functionality. To expand the available wavelength range of photosynthetic bacterial light-harvesting complex 2 (LH2 from Rhodopseudomonas acidophila 10050), artificial fluorescent dye (Alexa Fluor 647: A647) was covalently attached to N- and C-terminal Lys residues in LH2 alpha-polypeptides with a molar ratio of A647/LH2 similar or equal to 9/1. Fluorescence and transient absorption spectroscopies revealed that intracomplex energy transfer from A647 to intrinsic chromophores of LH2 (B850) occurs in a multiexponential manner, with time constants varying from 440 fs to 23 Ps through direct and B800-mediated indirect pathways. Kinetic analyses suggested that B800 chromophores mediate faster energy transfer, and the mechanism was interpretable in terms of Forster theory. This study demonstrates that a simple attachment of external chromophores with a flexible linkage can enhance the light harvesting activity of LH2 without affecting inherent functions of energy transfer, and can achieve energy transfer in the subpicosecond range. Addition of external chromophores, thus, represents a useful methodology for construction of advanced hybrid light-harvesting systems that afford solar energy in the broad spectrum.
引用
收藏
页码:13121 / 13129
页数:9
相关论文
共 50 条
  • [21] Physical origins and models of energy transfer in photosynthetic light-harvesting
    Novoderezhkin, Vladimir I.
    van Grondelle, Rienk
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (27) : 7352 - 7365
  • [22] Light-Harvesting Polymers: Ultrafast Energy Transfer in Polystyrene-Based Arrays of π-Conjugated Chromophores
    Chen, Zhuo
    Grumstrup, Erik M.
    Gilligan, Alexander T.
    Papanikolas, John M.
    Schanze, Kirk S.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (01) : 372 - 378
  • [23] Influence of LDAO on the Conformation and Release of Bacteriochlorophyll of Peripheral Light-Harvesting Complex (LH2) from Rhodobacter Azotoformans
    Zhao Gen-gui
    Dong Yan-min
    Yang Su-ping
    Jiao Nian-zhi
    Qu Yin-bo
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30 (10) : 2807 - 2811
  • [24] Energy Transfer Dynamics in Light-Harvesting Complex 2 Variants Containing Oxidized B800 Bacteriochlorophyll a
    Saga, Yoshitaka
    Otsuka, Yuji
    Tanaka, Aiko
    Masaoka, Yuto
    Hidaka, Tsubasa
    Nagasawa, Yutaka
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (25) : 6830 - 6836
  • [25] Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes
    Dewa, Takehisa
    Sumino, Ayumi
    Watanabe, Natsuko
    Noji, Tomoyasu
    Nango, Mamoru
    CHEMICAL PHYSICS, 2013, 419 : 200 - 204
  • [26] Structural Study of the Light-Harvesting Complex LH2 from the Purple Sulfur Bacteria Ectothiorhodospira haloalkaliphila by Cryoelectronic Microscopy
    Burtseva, A. D.
    Baymukhametov, T. N.
    Ilyasov, I. O.
    Bolshakov, M. A.
    Moskalenko, A. A.
    Boyko, K. M.
    Ashikhmin, A. A.
    CRYSTALLOGRAPHY REPORTS, 2023, 68 (06) : 879 - 885
  • [27] Population and coherence dynamics in light harvesting complex II (LH2)
    Yeh, Shu-Hao
    Zhu, Jing
    Kais, Sabre
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (08)
  • [28] Effect of photo-oxidation on energy transfer in light harvesting complex (LH2) from Rhodobacter sphaeroides 601
    Liu Kang-Jun
    Liu Wei-Min
    Yan Yong-Li
    Dong Zhi-Wei
    Liu Yuan
    Xu Chun-He
    Qian Shi-Xiong
    CHINESE PHYSICS LETTERS, 2006, 23 (09) : 2598 - 2601
  • [29] Excitation Dynamics of the Light-Harvesting Complex 2 from Thermochromatium Tepidum
    Yang Fan
    Yu Long-Jiang
    Wang Peng
    Ai Xi-Cheng
    Wang Zheng-Yu
    Zhang Jian-Ping
    ACTA PHYSICO-CHIMICA SINICA, 2010, 26 (07) : 2021 - 2030
  • [30] Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2
    Harel, Elad
    Long, Phillip D.
    Engel, Gregory S.
    OPTICS LETTERS, 2011, 36 (09) : 1665 - 1667