Sharp weights in the Cauchy problem for nonlinear Schrodinger equations with potential

被引:10
作者
Carles, Remi [1 ,2 ]
机构
[1] CNRS, F-34095 Montpellier, France
[2] Univ Montpellier, Math CC 051, F-34095 Montpellier, France
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2015年 / 66卷 / 04期
关键词
Nonlinear Schrodinger equation; Unbounded potential; Cauchy problem; FUNDAMENTAL SOLUTION; SMOOTHING PROPERTY;
D O I
10.1007/s00033-015-0501-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review different properties related to the Cauchy problem for the (nonlinear) Schrodinger equation with a smooth potential. For energy-subcritical nonlinearities and at most quadratic potentials, we investigate the necessary decay in space in order for the Cauchy problem to be locally (and globally) well posed. The characterization of the minimal decay is different in the case of super-quadratic potentials.
引用
收藏
页码:2087 / 2094
页数:8
相关论文
共 24 条
[1]   Time averaging for the strongly confined nonlinear Schrodinger equation, using almost-periodicity [J].
Ben Abdallah, Naoufel ;
Castella, Francois ;
Mehats, Florian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (01) :154-200
[2]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[3]   Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (03) :569-605
[4]  
CARLES R, 2008, PORT MATH, V65, P191
[5]   WKB analysis for nonlinear Schrodinger equations with potential [J].
Carles, Remi .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 269 (01) :195-221
[6]   NONLINEAR SCHRODINGER EQUATION WITH TIME DEPENDENT POTENTIAL [J].
Carles, Remi .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (04) :937-964
[7]  
Cazenave, 2003, LECT NOTES MATH, V10
[8]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[9]   Smoothing estimates for the Schrodinger equation with unbounded potentials [J].
D'Ancona, Piero ;
Fanelli, Luca .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (12) :4552-4567
[10]  
Dunford N., 1963, Linear Operators, V1st edition