Virtual Confocal Microscopy

被引:0
作者
Hanna, Philip M. [1 ]
Rigling, Brian D. [2 ]
Zelnio, Edmund G. [1 ]
机构
[1] Air Force Res Lab, Sensors Directorate, 2241 Avion Circle, Wright Patterson AFB, OH 45433 USA
[2] Wright State Univ, Dept Elect Engn, Dayton, OH 45435 USA
来源
THREE-DIMENSIONAL IMAGE CAPTURE AND APPLICATIONS VII | 2006年 / 6056卷
关键词
microscopy; 3D scene reconstruction; 3D scene segmentation and feature extraction; image alignment;
D O I
10.1117/12.650778
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
There is a need for persistent-surveillance assets to capture high-resolution, three-dimensional data for use in assisted target recognizing systems. Passive electro-optic imaging systems are presently limited by their ability to provide only 2-D measurements. We describe a methodology and system that uses existing technology to obtain 3-D information from disparate 2-D observations. This data can then be used to locate and classify objects under obscurations and noise. We propose a novel methodology for 3-D object reconstruction through use of established confocal microscopy techniques. A moving airborne sensing platform captures a sequence of geo-referenced, electro-optic images. Confocal processing of this data can synthesize a large virtual lens with an extremely sharp (small) depth of focus, thus yielding a highly discriminating 3-D data collection capability based on 2-D imagery. This allows existing assets to be used to obtain high-quality 3-D data (due to the fine z-resolution). This paper presents a stochastic algorithm for reconstruction of a 3-D target from a sequence of affine projections. We iteratively gather 2-D images over a known path, detect target edges, and aggregate the edges in 3-D space. In the final step, an expectation is computed resulting in an estimate of the target structure.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Virtual slit scanning microscopy [J].
Reto Fiolka ;
Andreas Stemmer ;
Yury Belyaev .
Histochemistry and Cell Biology, 2007, 128 :499-505
[32]   Scattering suppression and confocal detection in multifocal multiphoton microscopy [J].
Martini, Joerg ;
Andresen, Volker ;
Anselmetti, Dario .
JOURNAL OF BIOMEDICAL OPTICS, 2007, 12 (03)
[33]   In vivo reflectance confocal microscopy in a typical case of melasma [J].
Costa, Mariana Carvalho ;
Eljaiek, Hernando Vega ;
Abraham, Leonardo Spagnol ;
Azulay-Abulafia, Luna ;
Ardigo, Marco .
ANAIS BRASILEIROS DE DERMATOLOGIA, 2012, 87 (05) :782-784
[34]   Bedside diagnosis of lentigo maligna with reflectance confocal microscopy [J].
Zubair, Raheel ;
Haroon, Attiya ;
Rao, Babar .
JOURNAL OF CUTANEOUS PATHOLOGY, 2018, 45 (07) :553-+
[35]   Digital Twins for 3D Confocal Microscopy [J].
Hansen, Poul-Erik ;
Pahl, Tobias ;
Fu, Liwei ;
Romer, Astrid T. ;
Rosenthal, Felix ;
Siaudinyte, Lauryna ;
Reichelt, Stephan ;
Lehmann, Peter ;
Karamehmedovic, Mirza .
OPTICS AND PHOTONICS FOR ADVANCED DIMENSIONAL METROLOGY III, 2024, 12997
[36]   Virtual slit scanning microscopy [J].
Fiolka, Reto ;
Stemmer, Andreas ;
Belyaev, Yury .
HISTOCHEMISTRY AND CELL BIOLOGY, 2007, 128 (06) :499-505
[37]   Cellular aspects of vascular remodeling in hypertension revealed by confocal microscopy [J].
Arribas, SM ;
Hillier, C ;
González, C ;
McGrory, S ;
Dominiczak, AF ;
McGrath, JC .
HYPERTENSION, 1997, 30 (06) :1455-1464
[38]   Fluorescein enhanced confocal microscopy in vivo for the evaluation of corneal epithelium [J].
Mocan, Mehmet C. ;
Irkec, Murat .
CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2007, 35 (01) :38-43
[39]   Reflectance confocal microscopy features of thin versus thick melanomas [J].
Kardynal, Agnieszka ;
Olszewska, Malgorzata ;
de Carvalho, Nathalie ;
Walecka, Irena ;
Pellacani, Giovanni ;
Rudnicka, Lidia .
GIORNALE ITALIANO DI DERMATOLOGIA E VENEREOLOGIA, 2019, 154 (04) :379-385
[40]   Automated Tortuosity Analysis of Nerve Fibers in Corneal Confocal Microscopy [J].
Zhao, Yitian ;
Zhang, Jiong ;
Pereira, Ella ;
Zheng, Yalin ;
Su, Pan ;
Xie, Jianyang ;
Zhao, Yifan ;
Shi, Yonggang ;
Qi, Hong ;
Liu, Jiang ;
Liu, Yonghuai .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (09) :2725-2737