Sequence Kernel Association Tests for the Combined Effect of Rare and Common Variants

被引:334
作者
Ionita-Laza, Iuliana [1 ]
Lee, Seunggeun [2 ]
Makarov, Vlad [1 ]
Buxbaum, Joseph D. [3 ,4 ,5 ,6 ]
Lin, Xihong [2 ]
机构
[1] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[2] Harvard Univ, Dept Biostat, Boston, MA 02115 USA
[3] Icahn Sch Med Mt Sinai, Seaver Autism Ctr, New York, NY 10029 USA
[4] Icahn Sch Med Mt Sinai, Dept Psychiat Neurosci & Genet, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Dept Genom Sci, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, Friedman Brain Inst, New York, NY 10029 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DISEASE ASSOCIATION; GENETIC-VARIANTS; GENOME; FRAMEWORK; SET; PROPORTION; RISK; SNPS;
D O I
10.1016/j.ajhg.2013.04.015
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recent developments in sequencing technologies have made it possible to uncover both rare and common genetic variants. Genome-wide association studies (GWASs) can test for the effect of common variants, whereas sequence-based association studies can evaluate the cumulative effect of both rare and common variants on disease risk. Many groupwise association tests, including burden tests and variance-component tests, have been proposed for this purpose. Although such tests do not exclude common variants from their evaluation, they focus mostly on testing the effect of rare variants by upweighting rare-variant effects and downweighting common-variant effects and can therefore lose substantial power when both rare and common genetic variants in a region influence trait susceptibility. There is increasing evidence that the allelic spectrum of risk variants at a given locus might include novel, rare, low-frequency, and common genetic variants. Here, we introduce several sequence kernel association tests to evaluate the cumulative effect of rare and common variants. The proposed tests are computationally efficient and are applicable to both binary and continuous traits. Furthermore, they can readily combine GWAS and whole-exome-sequencing data on the same individuals, when available, and are also applicable to deep-resequencing data of GWAS loci. We evaluate these tests on data simulated under comprehensive scenarios and show that compared with the most commonly used tests, including the burden and variance-component tests, they can achieve substantial increases in power. We next show applications to sequencing studies for Crohn disease and autism spectrum disorders. The proposed tests have been incorporated into the software package SKAT.
引用
收藏
页码:841 / 853
页数:13
相关论文
共 45 条
  • [1] Agresti A, 2013, Categorical data analysis, V3rd
  • [2] Annotating non-coding regions of the genome
    Alexander, Roger P.
    Fang, Gang
    Rozowsky, Joel
    Snyder, Michael
    Gerstein, Mark B.
    [J]. NATURE REVIEWS GENETICS, 2010, 11 (08) : 559 - 571
  • [3] Large-Scale Gene-Centric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci
    Asselbergs, Folkert W.
    Guo, Yiran
    van Iperen, Erik P. A.
    Sivapalaratnam, Suthesh
    Tragante, Vinicius
    Lanktree, Matthew B.
    Lange, Leslie A.
    Almoguera, Berta
    Appelman, Yolande E.
    Barnard, John
    Baumert, Jens
    Beitelshees, Amber L.
    Bhangale, Tushar R.
    Chen, Yii-Der Ida
    Gaunt, Tom R.
    Gong, Yan
    Hopewell, Jemma C.
    Johnson, Toby
    Kleber, Marcus E.
    Langaee, Taimour Y.
    Li, Mingyao
    Li, Yun R.
    Liu, Kiang
    McDonough, Caitrin W.
    Meijs, Matthijs El.
    Middelberg, Rita P. S.
    Musunuru, Kiran
    Nelson, Christopher P.
    O'Connell, Jeffery R.
    Padmanabhan, Sandosh
    Pankow, James S.
    Pankratz, Nathan
    Rafelt, Suzanne
    Rajagopalan, Ramakrishnan
    Romaine, Simon P. R.
    Schork, Nicholas J.
    Shaffer, Jonathan
    Shen, Haiqing
    Smith, Erin N.
    Tischfield, Sam E.
    van der Most, Peter J.
    van Vliet-Ostaptchouk, Jana V.
    Verweij, Niek
    Volcik, Kelly A.
    Zhang, Li
    Bailey, Kent R.
    Bailey, Kristian M.
    Bauer, Florianne
    Boer, Jolanda M. A.
    Braund, Peter S.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 91 (05) : 823 - 838
  • [4] Comparison of Statistical Tests for Disease Association With Rare Variants
    Basu, Saonli
    Pan, Wei
    [J]. GENETIC EPIDEMIOLOGY, 2011, 35 (07) : 606 - 619
  • [5] METHOD FOR COMBINING NON-INDEPENDENT, ONE-SIDED TESTS OF SIGNIFICANCE
    BROWN, MB
    [J]. BIOMETRICS, 1975, 31 (04) : 987 - 992
  • [6] Optimal detection of heterogeneous and heteroscedastic mixtures
    Cai, T. Tony
    Jeng, X. Jessie
    Jin, Jiashun
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 629 - 662
  • [7] Joint Association Testing of Common and Rare Genetic Variants Using Hierarchical Modeling
    Cardin, Niall J.
    Mefford, Joel A.
    Witte, John S.
    [J]. GENETIC EPIDEMIOLOGY, 2012, 36 (06) : 642 - 651
  • [8] An Exponential Combination Procedure for Set-Based Association Tests in Sequencing Studies
    Chen, Lin S.
    Hsu, Li
    Gamazon, Eric R.
    Cox, Nancy J.
    Nicolae, Dan L.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 91 (06) : 977 - 986
  • [9] A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3
    Cingolani, Pablo
    Platts, Adrian
    Wang, Le Lily
    Coon, Melissa
    Tung Nguyen
    Wang, Luan
    Land, Susan J.
    Lu, Xiangyi
    Ruden, Douglas M.
    [J]. FLY, 2012, 6 (02) : 80 - 92
  • [10] HYPOTHESIS TESTING WHEN A NUISANCE PARAMETER IS PRESENT ONLY UNDER ALTERNATIVE
    DAVIES, RB
    [J]. BIOMETRIKA, 1977, 64 (02) : 247 - 254